Concept explainers
Discontinuous Forcing Term. In certain physical models, the nonhomogeneous term, or forcing term,
may not be continuous but may have a jump discontinuity. If this occurs, we can still obtain a reasonable solution using the following procedure. Consider the initial value problem
where
a. Find a solution to the initial value problem for
b. Find a general solution for
c. Now choose the constants in the general solution from part (b) so that the solution from part (a) and the solution from part (b) agree, together with their first derivatives, at
Learn your wayIncludes step-by-step video
Chapter 4 Solutions
Fundamentals Of Differential Equations And Boundary Value Problems Plus Mylab Math With Pearson Etext -- Title-specific Access Card Package (7th ... Fundamentals Of Differential Equations)
Additional Math Textbook Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Pre-Algebra Student Edition
College Algebra with Modeling & Visualization (5th Edition)
- Only 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk Geometry expert solve itarrow_forwardScrie trei multiplii comuni pentru numerele 12 și 1..arrow_forward^^ QUESTION 1. Two photos in total, I wrote the questionOnly 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk Geometry maths expert solve itarrow_forward
- Only 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk Geometry expert solve itarrow_forwardAll 6 questions in the image. Thank youarrow_forwardMinimum number of times that activity should be recorded: 9 (3 each phase) Sample calculation (Azimuth- Stars): On 05th May 2006 at 11h00m00s UTC, a vessel in position 04°30'N 010°00'W observed Canopus bearing 145° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Aries (05d 11h): 028° 10.7' Increment (00m 00s): 000° 00.0' GHA Aries: 028° 10.7' Longitude (W): (-) 010° 00.0' (minus- since longitude is westerly) LHA Aries: 018° 10.7' SHA Canopus: (+) 263° 59.0' LHA Canopus: 282° 09.7' S 052° 42.1' Declination: P=360-282° 09.7'= 77° 50.3' (If LHA>180°, P= 360-LHA) A Tan Latitude/ Tan P A Tan 04° 30' Tan 77° 50.3' A = 0.016960803 S (A is named opposite to latitude, except when hour angle is between 090° and 270°) B=Tan Declination/ Sin P B= Tan 052° 42.1/ Sin 77° 50.3' B=1.342905601 S (B is always named same as declination) C=A+B=1.359866404 S (C correction, A+/- B: If A and B have same name- add, If different name- subtract) Tan Azimuth 1/ (CX…arrow_forward
- No chatgpt pls will upvotearrow_forward2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forward1) Show that the force response of a MDOF system with general damping can be written as: X liax) -Σ = ral iw-s, + {0} iw-s,arrow_forward
- 3) Prove that in extracting real mode ø, from a complex measured mode o, by maximizing the function: maz | ቀÇቃ | ||.|| ||.||2 is equivalent to the solution obtained from the followings: max Real(e)||2arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. L1 (a) The line L₁ is tangent to the unit circle at the point 0.992 (b) The tangent line 4₁ has equation: y= 0.126 x +0.992 (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line L₂ has equation: y= 0.380 x + x × x)arrow_forwardPlease help me with these questions. I am having a hard time understanding what to do. Thank youarrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning