
Engineering Mechanics: Dynamics
8th Edition
ISBN: 9781118885840
Author: James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.5, Problem 31P
To determine
The velocity of the flat car.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I don't know how to answer this question
Required information
Consider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of
the rod is exposed to an air temperature of 400°C. Thermocouples imbedded in the rod at locations 25 mm and 120 mm
from the base surface register temperatures of 325°C and 375°C, respectively.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
T₁
Ть
T₂
x2
Air
Determine the rod length (mm) for the case where the ratio of the heat transfer from a finite length fin to the heat transfer from a very
long fin under the same conditions is 99 percent.
The length of the rod is
mm.
please find Ix in mm4
Chapter 4 Solutions
Engineering Mechanics: Dynamics
Ch. 4.5 - The system of three particles has the indicated...Ch. 4.5 - Prob. 2PCh. 4.5 - Prob. 3PCh. 4.5 - Prob. 4PCh. 4.5 - Prob. 5PCh. 4.5 - Prob. 6PCh. 4.5 - The total linear momentum of a system of five...Ch. 4.5 - Prob. 8PCh. 4.5 - Prob. 9PCh. 4.5 - The monkeys of Prob. 4/9 are now climbing along...
Ch. 4.5 - Prob. 11PCh. 4.5 - Each of the five connected particles has a mass of...Ch. 4.5 - Prob. 13PCh. 4.5 - Calculate the vertical acceleration of the system...Ch. 4.5 - The two small spheres, each of mass m, and their...Ch. 4.5 - Prob. 17PCh. 4.5 - A centrifuge consists of four cylindrical...Ch. 4.5 - The three small spheres are welded to the light...Ch. 4.5 - Prob. 20PCh. 4.5 - The 300-kg and 400-kg mine cars are rolling in...Ch. 4.5 - Prob. 22PCh. 4.5 - The man of mass m1 and the woman of mass m2 are...Ch. 4.5 - The woman A, the captain B, and the sailor C weigh...Ch. 4.5 - Prob. 25PCh. 4.5 - Prob. 26PCh. 4.5 - Prob. 27PCh. 4.5 - Prob. 28PCh. 4.5 - Prob. 29PCh. 4.5 - The carriage of mass 2m is free to roll along the...Ch. 4.5 - Prob. 31PCh. 4.5 - Prob. 33PCh. 4.5 - Prob. 34PCh. 4.5 - Prob. 35PCh. 4.5 - Prob. 36PCh. 4.5 - Prob. 37PCh. 4.5 - Prob. 38PCh. 4.5 - Prob. 39PCh. 4.5 - Prob. 40PCh. 4.5 - Prob. 41PCh. 4.5 - Prob. 42PCh. 4.5 - Prob. 43PCh. 4.5 - The 90° vane moves to the left with a constant...Ch. 4.5 - The pipe bend shown has a cross-sectional area A...Ch. 4.5 - A jet of fluid with cross-sectional area A and...Ch. 4.5 - Prob. 47PCh. 4.5 - Prob. 48PCh. 4.5 - Prob. 49PCh. 4.5 - Prob. 50PCh. 4.5 - Prob. 51PCh. 4.5 - Prob. 52PCh. 4.5 - Prob. 53PCh. 4.5 - Prob. 54PCh. 4.5 - Prob. 55PCh. 4.5 - Prob. 56PCh. 4.5 - Prob. 57PCh. 4.5 - Prob. 58PCh. 4.5 - Prob. 60PCh. 4.5 - Prob. 61PCh. 4.5 - Prob. 62PCh. 4.5 - Prob. 63PCh. 4.5 - Prob. 64PCh. 4.5 - Prob. 65PCh. 4.5 - Prob. 66PCh. 4.5 - Prob. 67PCh. 4.5 - In the figure is shown a detail of the stationary...Ch. 4.7 - When the rocket reaches the position in its...Ch. 4.7 - Prob. 70PCh. 4.7 - Prob. 71PCh. 4.7 - Prob. 72PCh. 4.7 - Prob. 73PCh. 4.7 - Prob. 74PCh. 4.7 - Prob. 75PCh. 4.7 - Prob. 76PCh. 4.7 - Prob. 77PCh. 4.7 - Prob. 78PCh. 4.7 - Prob. 79PCh. 4.7 - Prob. 80PCh. 4.7 - Prob. 81PCh. 4.7 - Prob. 82PCh. 4.7 - Prob. 83PCh. 4.7 - Prob. 84PCh. 4.7 - Prob. 85PCh. 4.7 - Prob. 86PCh. 4.7 - Prob. 87PCh. 4.7 - Prob. 88PCh. 4.7 - Prob. 89PCh. 4.7 - Prob. 90PCh. 4.7 - Prob. 91PCh. 4.7 - Prob. 92PCh. 4.8 - Prob. 93RPCh. 4.8 - For the particle system of Prob. 4/93, determine...Ch. 4.8 - Prob. 95RPCh. 4.8 - Prob. 96RPCh. 4.8 - Prob. 97RPCh. 4.8 - Prob. 98RPCh. 4.8 - Prob. 99RPCh. 4.8 - Prob. 100RPCh. 4.8 - Prob. 101RPCh. 4.8 - Prob. 102RPCh. 4.8 - Prob. 104RPCh. 4.8 - Prob. 105RPCh. 4.8 - Prob. 106RPCh. 4.8 - Prob. 107RPCh. 4.8 - Prob. 108RPCh. 4.8 - Prob. 109RPCh. 4.8 - Prob. 110RPCh. 4.8 - A rope or hinged-link bicycle-type chain of length...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ۲/۱ ∞ + : 5V ON Date AND Loaded with an oR P 5- A R Vect bov V(22)= IR, Vcc-vd 2R V(21) V(22) + Vd=" or V(z) HomeWo Vec-T 022 51-2 العنوان Example 5.5: The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15%, 7.5° above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the Dow rises. Vezi b) V225 V22 lo 21.5 2.15 U 5-0.7 K Loka (I= Vecond R 5:4.57 U 25-0-7 Tak R 5-0.7 5kr V2, Va-IR=5-2.15 -2-85 NEW G C 'WR к >arrow_forward: + ♡ +① العنوان I need a detailed drawing with explanation so A 4 ined sove in peaper 96252 Example 5.5 The turbine rotor of ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm ia clockwise direction when viewed from aft. The ship pitches through a total angle of 7.5° above and 7.5° below the horizontal, the motion beingle harmonic and hav gyroscopic couple on the bow rises. ding down be a period of 12 sec. Determine the maximum of the turbine and the direction of yaw as bax r 2.01 ۳/۱arrow_forward88 L Solle ined sove in peaper 96252 Example 5.5 The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15%, 7.5° above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the bow rises. النص ملصقات -20125 750 31 الرسم X 7.0! 989 Carrow_forward
- L + ined sove in peaper X-P 96852 Example 5.5 The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15%, 7.5° above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the bow rises. -20125 750 x2.01arrow_forwardExample 5.5 The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15%, 7.5° above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the bow rises.arrow_forwardPlease explain each step, writing euler rates etcarrow_forward
- 5. (计算题) Calculate the DOF of following mechanisms. If there are compound hinge, passive DOF or Redundant Constraint, please point them out. 品 ⑤A (a) 凸轮拨杆机构arrow_forward6.(计算题) Calculate the DOF of following mechanisms. If there are compound hinge, passive DOF or Redundant Constraint, please point them out. E D A B C Farrow_forwardA hot surface at 150°C is to be cooled by attaching 3-cm-long, 0.25-cm-diameter aluminum pin fins (k = 237 W/m-K) to it, with a center- to-center distance of 0.6 cm. The temperature of the surrounding medium is 30°C, and the heat transfer coefficient on the surfaces is 35 W/m²K. Determine the rate of heat transfer from the surface for a 1-m × 1-m section of the plate. Also determine the overall effectiveness of the fins. 0.6 cm 0.25 cm The total rate of heat transfer is kW. The fin effectiveness isarrow_forward
- Consider a stainless steel spoon (k = 8.7 Btu/h·ft·°F) partially immersed in boiling water at 200°F in a kitchen at 75°F. The handle of the spoon has a cross section of 0.08 in × 0.5 in and extends 7 in in the air from the free surface of the water. The heat transfer coefficient at the exposed surfaces of the spoon handle is 3 Btu/h·ft2·°F. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A spoon is placed inside the container, such that the distance of the water level from the top end of the handle of the spoon is 7 meters. T sub air is indicated in the region outside the container. Identify the assumptions required to solve the problem. Check All That Apply One-dimensional heat transfer analysis is used to solve the problem. One-dimensional heat transfer analysis is used to solve the problem. Bi-dimensional heat transfer analysis is used to solve the problem. Bi-dimensional heat transfer analysis is…arrow_forwardA turbine blade made of a metal alloy (k=17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a cross-sectional area of 5.13 cm². The turbine blade is exposed to hot gas from the combustion chamber at 1133°C with a convection heat transfer coefficient of 538 W/m²K. The base of the turbine blade maintains a constant temperature of 450°C and the tip is adiabatic. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Hot gas h=538 W/m²K -Turbine blade k = 17 W/m-K p=11 cm, L=5.3 cm A = 5.13 cm² -T=450°C Determine the heat transfer rate to the turbine blade. W. The heat transfer rate isarrow_forwardConsider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of the rod is exposed to an air temperature of 400°C. Thermocouples imbedded in the rod at locations 25 mm and 120 mm from the base surface register temperatures of 325°C and 375°C, respectively. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. . x1 32 x Calculate the rod base temperature (°C). The rod base temperature is °C. Air T∞arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY