
Concept explainers
The final pressure of the two rigid tanks.
The amount of heat transfer to the two rigid tanks.

Answer to Problem 131RP
The final pressure of the two rigid tanks is
The amount of heat transfer to the two rigid tanks is
Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Simplify Equation (I) and write energy balance two rigid tanks.
Here, the work to be done into the system is
Take the two rigid tanks as the system.
Substitute
Here, the total mass of the two rigid tank is
Determine the initial specific volume of the tank A.
Here, the specific volume of the saturated liquid phase is
Determine the initial internal energy of the tank A.
Here, the specific internal energy of the saturated liquid phase is
Determine the total mass of the two rigid tanks.
Determine the final specific volume of the two rigid tanks.
Here, the total volume of the two tanks is
Determine the final dryness fraction of the two rigid tanks.
Here, the specific volume change upon vaporization is
Determine the final internal energy of the tanks.
Conclusion:
For Tank A:
From the Table A-5, “Saturated water-Pressure”, obtain the value of the specific volume of liquid, the specific volume of vapour, the specific internal energy of liquid, and the specific internal energy change upon vaporization at 400 kPa of pressure and 0.80 of dryness fraction of water in tank A as:
Substitute
Substitute
For tank B:
The unit conversion of pressure from kPa to MPa.
From the Table A-5, “Superheated water-Pressure”, obtain the value of the initial specific volume of liquid and the initial specific internal energy of liquid at 0.2 MPa of pressure and
Substitute
Substitute
From the Table A-4, “Saturated water-Temperature”, obtain the value of the specific volume of liquid, the specific volume of vapour, the specific internal energy of liquid, the specific internal energy change upon vaporization, and the final pressure of the saturated mixture of liquid-vapour at
Thus, the final pressure of the two rigid tanks is
Substitute
Substitute
Substitute
Thus, the amount of heat transfer to the two rigid tanks is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- An old fashioned ice cream kit consists of two concentric cylinders of radii Ra and Rb. The inner cylinder is filled with milk and ice cream ingredients while the space between the two cylinders is filled with an ice-brine mixture. Ice cream begins to form on the inner surface of the inner cylinder. To expedite the process, would you recommend rotating the inner cylinder? Justify your recommendation. icecream/ ice-brine Ra Rbarrow_forwardFind temperatures STRICTLY USING RITZ APPROXIMATION METHODarrow_forwardSolve this Problem using RITZ APPROXIMATION. STEP BY STEParrow_forward
- B/40 The body is constructed of a uniform square plate, a uniform straight rod, a uniform quarter‐circular rod, and a particle (negligible dimensions). If each part has the indicated mass, determine the mass moments of inertia of the body about the x‐, y‐, and z‐axes. Answer Given.arrow_forward(read image) Answer:arrow_forward(read image) Answer Givenarrow_forward
- B/16. The plane area shown in the top portion of the figure is rotated 180° about the x‐axis to form the body of revolution of mass m shown in the lower portion of the figure. Determine the mass moment of inertia of the body about the x‐axis. Answer Givenarrow_forward(read image) Answer:arrow_forward(read image) Answer:arrow_forward
- 2nd Law of Thermodynamics A 1.5-ft3 rigid tank contains saturated refrigerant-134 at 170 psia. Initially, 20 percent of the volume isoccupied by liquid and the rest by vapor. A valve at the top of the tank is now opened, and vapor is allowedto escape slowly from the tank. Heat is transferred to the refrigerant such that the pressure inside the tankremains constant. The valve is closed when the last drop of liquid in the tank is vaporized. Determine thetotal heat transfer for this process.arrow_forwardDraw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum normal stress due to bending. 4.8 kips/ft 32 kips B C D E I Hinge 8 ft. 2 ft 5 ft 5 ft W12 x 40arrow_forward2nd Law of Thermodynamics A rigid, insulated tank that is initially evacuated is connected through a valve to the supply line that carrieshelium at 300 kPa and 140◦C. Now the valve is opened, and helium is allowed to flow into the tank until thepressure reaches 300 kPa, at which point the valve is closed. Determine the flow work of the helium in thesupply line and the final temperature of the helium in the tank.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





