A piston–cylinder device initially contains 0.35 kg of steam at 3.5 MPa, superheated by 7.4°C. Now the steam loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200°C. Determine (a) the final pressure and the quality (if mixture), (b) the boundary work, (c) the amount of heat transfer when the piston first hits the stops, and (d) the total heat transfer.
FIGURE P4–141
(a)
The final pressure of the piston-cylinder device.
The quality at the final state of the piston-cylinder device.
Answer to Problem 139RP
The final pressure of the piston-cylinder device is
The quality at the final state of the piston-cylinder device is
Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Simplify Equation (I) and write energy balance relation of piston-cylinder device.
Here, the work to be done into the system is
Simplify the Equation (III), write energy balance relation when the piston first hits the stops state(1-2).
Here, the mass of the piston-cylinder device is
Similarly the Equation (IV), when the piston first hits and the final state(1-3).
Here, the mass of the piston-cylinder device is
Determine the state 1 temperature of the piston-cylinder device.
Here, the saturated temperature at 3500 kPa is
Conclusion:
Write the unit conversion pressure from MPa to kPa for piston-cylinder device.
From the Table A-5 “Saturated water-Pressure table”, obtain the value of saturated temperature at 3500 kPa pressure as
Substitute
From the Table A-4 through A-6 “Saturated water”, obtain the value of steam at various states for piston-cylinder device.
At state 1 pressure and temperature of steam as
At state 1-2 pressure and quality of state of steam as
At state 2-3 specific volume and temperature of steam as
Thus, the final pressure of the piston-cylinder device is
(b)
The boundary work done of the piston-cylinder device.
Answer to Problem 139RP
The boundary work done of the piston-cylinder device is
Explanation of Solution
Substitute 0 for
Here, the mass of piston-cylinder device is
Conclusion:
Substitute
Thus, the boundary work done of the piston-cylinder device is
(c)
The amount of heat transfer when the piston first hits the stops.
Answer to Problem 139RP
The amount of heat transfer when the piston first hits the stops is
Explanation of Solution
Conclusion:
Substitute
Thus, the amount of heat transfer when the piston first hits the stops is
(d)
The total amount heat transfer in the piston-cylinder device.
Answer to Problem 139RP
The total amount heat transfer in the piston-cylinder device is
Explanation of Solution
Conclusion:
Substitute
Thus, the total amount heat transfer in the piston-cylinder device is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- A piston-cylinder device, with a set of stops on the top, initially contains 3 kg of water at 200 kPa and x=0.7. Heat is now transferred to the water and the piston rises until it hits the stops, at which point the cylinder contains saturated vapor water. Additional heat is transferred until the pressure inside cylinder also doubled. Required: Perform step by step energy analysis and determine: a) The initial volume and the initial temperature b) The final volume and the final temperature c) The boundary work d) The total heat transfer e) Draw pressure-specific volume graph and label all data with respect to the dome. Piston water Figure 1arrow_forwardWater initially at 300 kPa and 0.5 m³/kg is contained in a piston-cylinder device fitted with stops so that the water supports the weight of the piston and the force of the atmosphere. The water is heated until it reaches the saturated vapor state and the piston rests against the stops. With the piston against the stops, the water is further heated until the pressure is 600 kPa. On the P-vand T-v diagrams, sketch, with respect to the saturation lines, the process curves passing through both the initial and final states of the water. Label the states on the process as 1, 2, and 3. On both the P-vand T-v diagrams, sketch the isotherms passing through the states and show their values, in °C, on the isotherms. Solve this using appropriate software. Use data from the tables. Water 300 kPa 0.5 m²/kg (Please upload your response/solution using the controls below.)arrow_forwardA piston–cylinder device initially contains steam at 3.5 MPa, superheated by 5°C. Now, steam loses heat to the surroundings and the piston moves down, hitting a set of stops, at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200°C. Determine (a) the initial temperature, (b) the enthalpy change per unit mass of the steam by the time the piston first hits the stops, and (c) the final pressure and the quality (if mixture).arrow_forward
- Q1/ A frictionless piston–cylinder device initially contains 200 L of saturated liquid refrigerant-134a. The piston is free to move, and its mass is such that it maintains a pressure of 900 kPa on the refrigerant. The refrigerant is now heated until its temperature rises to 70°C. Calculate the work done during this process. Answer: 5571 kJarrow_forwardA piston-cylinder device with a set of stops initially contains 0.3 kg of steam at 1.0 MPa and 400 °C. The location of the stops corresponds to 60% of the initial volume. Now, steam loses heat to the surroundings and the piston moves down hitting the set of stops. After the piston hits the set of stops, the cooling continues until the cylinder contains water at 100 °C. Determine: (a) the initial volume of steam (b) the total heat transfer (Q) of the steam by the time the piston first hits the stops (c) the final pressure and the quality (if mixture) when the water cools to 100 °C.arrow_forwardWater initially at 200 kPa and 300°C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. Water 200 kPa 300°C Find the overall change in internal energy between the initial and final states per unit mass of water. Use data from the tables. (You must provide an answer before moving on to the next part.) The overall change in internal energy is K kJ/kg.arrow_forward
- Water initially at 300 kPa and 250o C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then teh water continues to cool until the pressure is 100 kPa. On the T-v diagrams, sketch the process curves passing through both the initial, intermediate, and final states of the water, Label the T, P and v values for end states on the process curvesarrow_forward(9)A piston-cylinder device initially contains steam at 5 MPa and 450°C. Now, steam loses heat to the surroundings and the piston moves down hitting a set of stops at which point the cylinder contains saturated vapor water. The cooling continues until the cylinder contains water at 180°C. Show the process on a T-v diagram with respect to saturation lines showing the three states it passes through. Also, put the values of temperature, pressure and specific volume for each state on the figure. Steamarrow_forwardA piston–cylinder device initially contains steam at 3.5 MPa, superheated by 5°C. Now, steam loses heat to the surroundings and the piston moves down hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200°C. Determine (a) the initial temperature, (b) the enthalpy change per unit mass of the steam by the time the piston first hits the stops, and (c) the final pressure and the quality (if mixture).arrow_forward
- NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A piston-cylinder device initially contains 1 kg saturated liquid water at 200°C. Now heat is transferred to the water until the volume quadruples and the cylinder contains saturated vapor only. The saturated liquid properties of water at 200°C 3 are vf= 0.001157 m³/kg and uf= 850.46 kJ/kg (Table A-4). Water 71 kg 200°C Q Determine the internal energy change of the water. The change in internal energy is kJ.arrow_forwardA piston-cylinder device initially contains steam at 3.5 MPa, and 250°C. Steam loses heat to the surroundings and the piston moves down, hitting a set of stops, at which point the cylinder contains saturated water vapor. The cooling continues until the water is at 150°C. Determine the total work and heat transfer per unit mass of water (kJ/kg). Draw the processes on T-v diagram.arrow_forwardAn insulated piston-cylinder device initially contains 0.3 m³ of carbon dioxide at 200 kPa and 27°C. An electric switch is turned on, and a 90.0-V source supplies current to a resistance heater inside the cylinder for a period of 10 min. The pressure is held constant during the process, while the volume is doubled. Determine the current that passes through the resistance heater. The gas constant and molar mass of CO2 are R 0. 1889 kPa m³/kg K and M= 44 kg/kmol (Table A-1). The specific heat of CO2 at the average (300 + 600)/2 = 450 K is cp, avg 0.978 kJ/kg C (Table A-2b). (Round the final answer to three temperature of Tavg " decimal places.) The current that passes through the resistance heater is 5.745 A.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY