In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. 2 y ' ' − 3 y ' + y = 0
In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. 2 y ' ' − 3 y ' + y = 0
(a) Find the general solution in terms of real functions.
(b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type.
(c) Use the general solution obtained in part (a) to find a two parameter family of trajectories
X
=
x
1
i
+
x
2
j
=
y
i
+
y
'
j
of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories.
1. The regular representation of a finite group G is a pair (Vreg, Dreg). Vreg is a vector space
and Dreg is a homomorphism.
(a) What is the dimension of Vreg?
(b) Describe a basis for Vreg and give a formula for Dreg. Hence explain why the homo-
morphism property is satisfied by Dreg.
(c) Prove that the character ✗reg (g) defined by tr Dreg (g) is zero if g is not the identity
element of the group.
(d) A finite group of order 60 has five irreducible representations R1, R2, R3, R4, R5. R₁
is the trivial representation. R2, R3, R4 have dimensions (3,3,4) respectively. What is the
dimension of R5? Explain how your solution is related to the decomposition of the regular
representation as a direct sum of irreducible representations (You can assume without proof
the properties of this decomposition which have been explained in class and in the lecture
notes).
(e) A
group element
has characters in the irreducible representations R2, R3, R4 given
as
R3
R2 (g)
= -1
X³ (g) = −1 ; XR4 (g) = 0…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.