In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. y ' ' + 2 y ' − 8 y = 0
In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. y ' ' + 2 y ' − 8 y = 0
(a) Find the general solution in terms of real functions.
(b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type.
(c) Use the general solution obtained in part (a) to find a two parameter family of trajectories
X
=
x
1
i
+
x
2
j
=
y
i
+
y
'
j
of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories.
1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative
maximum and minimum values of f.
(a) f(x) = x² - 2x²+3
(b) f(x) = (x+1)5-5x-2
(c) f(x) =
x2
x-9
2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f.
(a) f(x) = x - 2x²+3
(b) g(x) = x³- x
(c) f(x)=x-6x3 + x-8
3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test.
(a) f(x)=1+3x² - 2x3
(b) g(x) = 2x3 + 3x² - 12x-4
24.2. Show that, for any constant zo Є C,
(a). e* = e²o
Σ
j=0
(2 - 20);
j!
|z|
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.