Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ ln x x r = 0 , lim x → + ∞ x r ln x = + ∞ , lim x → 0 + x r ln x = 0 for any positive real number r . In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → 0 + . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x ln x
Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ ln x x r = 0 , lim x → + ∞ x r ln x = + ∞ , lim x → 0 + x r ln x = 0 for any positive real number r . In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → 0 + . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x ln x
Using
L'H
o
^
pital's
rule (Section 3.6) one can verify that
lim
x
→
+
∞
ln
x
x
r
=
0
,
lim
x
→
+
∞
x
r
ln
x
=
+
∞
,
lim
x
→
0
+
x
r
ln
x
=
0
for any positive real number
r
. In these exercises: (a) Use these results, as necessary, to find the limits of
f
x
as
x
→
+
∞
and as
x
→
0
+
. (b) Sketch a graph of
f
x
and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility.
Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties
to find lim→-4
1
[2h (x) — h(x) + 7 f(x)] :
-
h(x)+7f(x)
3
O DNE
17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t).
(a) How much of the slope field can
you sketch from this information?
[Hint: Note that the differential
equation depends only on t.]
(b) What can you say about the solu-
tion with y(0) = 2? (For example,
can you sketch the graph of this so-
lution?)
y(0) = 1
y
AN
(b) Find the (instantaneous) rate of change of y at x = 5.
In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of
change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the
following limit.
lim
h→0
-
f(x + h) − f(x)
h
The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule
defining f.
f(x + h) = (x + h)² - 5(x+ h)
=
2xh+h2_
x² + 2xh + h² 5✔
-
5
)x - 5h
Step 4
-
The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x).
-
f(x + h) f(x) =
= (x²
x² + 2xh + h² -
])-
=
2x
+ h² - 5h
])x-5h) - (x² - 5x)
=
]) (2x + h - 5)
Macbook Pro
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.