Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 54P
To determine
The ionization energies of L, M, and N shells of Tungsten.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The K series of the discrete spectrum of tungsten contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 0.021 5 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L, M, and N shells.
The K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0209 nm, and 0.0215 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L,
M, and N shells.
kev
EL
= 11.83
kev
2.4
Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. ke
EN
EM
= 10.17
%D
The K series of the discrete x-ray spectrum of tungsten contains wavelengths of 0.018 5 nm,
0.020 9 nm, and 0.021 5 nm. The K-shell ionization energy is 69.5 keV. (a) Determine the
ionization energies of the L, M, and N shells.
L shell
_keV
M shell
keV
N shell
_keV
Chapter 42 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0209 nm, and 0.0215 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L, M, and N shells. EL= ______ keV EM= ______ keV EN= ______ keVarrow_forwardThe Ka X-ray emission line of tungsten occurs at λ = 0.021 nm. The energy difference between K and L levels in this atoms is about (a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eVarrow_forwardA visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm. A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.) B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?arrow_forward
- The L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forwarda. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forwardA hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?arrow_forward
- You measure a wavelength of 397.1 nm in a spectroscopy experiment. You identify this as a particular transition from the hydrogen Balmer series. Which transition is it?arrow_forwardIf the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?arrow_forwardO The electron transitions to the n 2 state. O The electron transitions to the n = 5 state. O The electron is captured by the nucleus. A hypothetical atom has three energy levels: the ground-state level and levels 1.25 eV and 2.75 eV above the ground state. When this atom is in the ground state, what wavelengths of light may it absorb? Let Planck's constant h = 4.136 x 10 eV s, and the speed of light c= 3.00 x 10° m/s. O451 nm and 993 nm O 451 nm, 827 nm, and 993 nm O 827 nm and 993 nm O451 nm and 827 nmarrow_forward
- An atom has stationary states E1 = 0.0 eV, E2 = 2.0 eV, and E3 = 5.0 eV. What wavelengths are observed in the absorption spectrum and in the emission spectrum of this atom?arrow_forwarda) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forwardA hydrogen atom in an n= 2, I= 1, m = -1 state emits a photon when it decays to an n= 1, l= 0, ml-D0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the %3D wavelength of the photon from the zero-field value? O 1.74 m OO 1.74 nm O 1.74A° O 1.74 mm 1.74 x 10-12 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College