Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 6CQ
To determine
The reason for which non uniform magnetic field used in Stern-Gerlach experiment.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What was used in the Stern-Gerlach experiment to creat an inhomogeneous magnetic field?
The Stern-Gerlach experiment is always performed with the beam of nuetral atoms wouldn't be easier to form beam using ionized atoms? Why wouldn't this work?
What would be the outcome of the Stern-Gerlach experiment if
(a) a homogeneous (as opposed to inhomogeneous) magnetic field was used?
(b) silver atoms were like classical magnets?
Discuss if the beam of silver atoms would get split or not.
Suppose that the beam direction is +x, and the magnetic field B is applied in the z direction.
Chapter 42 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Similar questions
- Find the minimum torque magnitude that acts on the orbital magnetic dipole of a 3p electron in an external magnetic field of 2.50 × 10-3 T.arrow_forwardWhat was done with the silver after it was given KE in the Stern-Gerlach experiment?arrow_forwardExplain the finding of Stern-Gerlach experiment including the presentation of the experiment’s setup.arrow_forward
- In 1927 T. E. Phipps and J. B. Taylor of the University of Illinois reported an important experiment similar to the Stern-Gerlach experiment but using hydrogen atoms instead of silver. This was done because hydrogen is the simplest atom, and the separation of the atomic beam in the inhomogeneous magnetic field would allow a clearer interpretation. The atomic hydrogen beam was produced in a discharge tube having a temperature of 663 K. The highly collimated beam passed along the x direction through an inhomogeneous field (of length 3 cm) having an average gradient of 1240 T/m along the z direction. If the magnetic moment of the hydrogen atom is 1 Bohr magneton, what is the separation of the atomic beam?arrow_forwardObtain the Slater determinant for B atom.arrow_forwardHamiltonium Consider a spinless charged particle inside a magnetic field. Show that the gauge transformation of A(r)ZA(r) +Vf(r) is equal to product of the wave function in the expression explief(r)/hc). If the magnetic field is uniform along the z-axis, show that the energy spectrum is obtained from the following equation: 1 le|ħ -B +• 2) mc E = (n + 2marrow_forward
- Find the Rydberg constant for hydrogen with the help of atomic constants, assuming the mass of the nucleus to be infinite.arrow_forward(a) The current i due to a charge q moving in a circle with frequency frev is q frev. Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units A-m2. This magnetic moment is called a Bohr magneton.arrow_forwardwhat is the wavelength of a hydrogen Balmer series proton for m=4 and n=2? Use the rydberg formulaarrow_forward
- Assume that in the Stem-Gerlach experiment as described for neutral silver atoms,the magnetic field B has a magnitude of 0.25 T. Calculate the energy difference between the magnetic moment orientations of the silver atoms in the two sub beams? a)111.97 Ghz b)83.98 Ghz c)7.00 Ghz d)20.99 Ghz e)41.99 Ghzarrow_forwardList all the reasons why a fourth quantum number (intrinsic spin) might have helped explain the complex optical spectra in the early 1920sarrow_forward(a) The current i due to a charge q moving in a circle with frequency frev is qfrev . (a) Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units Am2 . This magnetic moment is called a Bohr magneton.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning