Mechanics of Materials
9th Edition
ISBN: 9780133254426
Author: Russell C. Hibbeler
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 4.2, Problem 4.4P
The composite shaft, consisting of aluminum, copper, and steel sections, is subjected to the loading shown. Determine the displacement of B with respect to C. The cross-sectional area and modulus of elasticity for each section are shown in the figure. Neglect the size of the collars at B and C.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The
The composite shaft, consisting of aluminum, copper, and steel sections, is
subjected to the loading shown. The cross-sectional area and modulus of elasticity for each
orl section are shown in the figure. The material of section AB, BC, and CD is aluminum, copper,
and steel, respectively. Neglect the size of the collars at B and C. Determine (a) the
displacement of end A with respect to end D, (b) the displacement of end B with respect to end
C, and (c) the normal stress in each section.
Aluminum
Соpper
Steel
Ea = 10(103) ksi
AAB= 0.09 in?
Ecu = 18(10') ksi
ABC = 0.12 in?
E = 29(103) ksi
Acd = 0.06 in²
%3D
3.50 kip
1.75 kip
2.00 kip
1.50 kip
A
B
3.50 kip
1.75 kip
-18 in.-
-12 in.-
-16 in.-
1.
The composite shaft, consisting of aluminum, copper,
and steel sections, is subjected to the loading shown.
Determine the displacement of B with respect to C and the
normal stress in each section. The cross-sectional area and
modulus of elasticity for each section are shown in the figure.
Neglect the size of the collars at B and C.
Aluminum
Eal = 70 GPa
AAB = 58 mm²
9 kN
A
Copper
Ecu = 126 GPa
ABC = 77 mm²
450 mm
16 kN
斤。
16 kN
-300 mm
BL
Steel
Est = 200 GPa
ACD = 39 mm²
8 kN
8 kN
-400 mm
7 kN
4.3 The composite shaft, consisting of aluminum, copper, and steel sections, is subjected to the loading
shown. Determine the displacement of end A with respect to end D and the normal stress in each
section. The cross-sectional area and modulus of elasticity for each section are shown in the figure.
Neglect the size of the collars at Band C.
3.50 kip
1.75 kip
1.50 kip
2.00 kip
Steel
BL
3.50 kip
1.75 kip
Aluminum
Copper
Est = 29 (10)³ Ksi
-18 in-
-12 in-
-16 in-
Ecu = 18 (10)3 Ksi
ABC = 0.12 in?
Eal = 10(10)³ Ksi
AcD = 0.09 6in²
= 0.09 in?
AAB
Chapter 4 Solutions
Mechanics of Materials
Ch. 4.2 - In each case, determine the internal normal force...Ch. 4.2 - Determine the internal normal force between...Ch. 4.2 - The post weighs 8kN/m. Determine the internal...Ch. 4.2 - The rod is subjected to an external axial force of...Ch. 4.2 - The rigid beam supports the load of 60 kN....Ch. 4.2 - The 20-mm-diameter A-36 steel rod is subjected to...Ch. 4.2 - Segments AB and CD of the assembly are solid...Ch. 4.2 - The 30-mm-diameter A992 steel rod is subjected to...Ch. 4.2 - If the 20-mm-diameter rod is made of A-36 steel...Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...
Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...Ch. 4.2 - Prob. 4.1PCh. 4.2 - The copper shaft is subjected to the axial loads...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - 4-5. The assembly consists of a steel rod CB and...Ch. 4.2 - 4-6. The bar has a cross-sectional area of 3 in2,...Ch. 4.2 - 4–7. If P1 = 50 kip and P2 = 150 kip, determine...Ch. 4.2 - *4-8. If the vertical displacements of end A of...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The rigid bar is supported by the pin-connected...Ch. 4.2 - Prob. 4.14PCh. 4.2 - Prob. 4.15PCh. 4.2 - *4-16. The hanger consists of three 2014-T6...Ch. 4.2 - 4-17. The hanger consists of three 2014-T6...Ch. 4.2 - Prob. 4.18PCh. 4.2 - Prob. 4.19PCh. 4.2 - The assembly consists of three titanium...Ch. 4.2 - Prob. 4.21PCh. 4.2 - Prob. 4.22PCh. 4.2 - Prob. 4.23PCh. 4.2 - Determine the relative displacement of one end of...Ch. 4.2 - Prob. 4.25PCh. 4.2 - Prob. 4.26PCh. 4.2 - 4-27. The circular bar has a variable radius of r...Ch. 4.2 - Prob. 4.28PCh. 4.2 - Prob. 4.29PCh. 4.2 - Prob. 4.30PCh. 4.5 - 4-31. The concrete column is reinforced using four...Ch. 4.5 - Prob. 4.32PCh. 4.5 - 4-33. The steel pipe is filled with concrete and...Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - Determine the support reactions at the rigid...Ch. 4.5 - If the supports at A and C are flexible and have a...Ch. 4.5 - Prob. 4.38PCh. 4.5 - Prob. 4.39PCh. 4.5 - Prob. 4.40PCh. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The assembly consists of two red brass C83400...Ch. 4.5 - *4-44. The assembly consists of two red brass...Ch. 4.5 - Prob. 4.45PCh. 4.5 - If the gap between C and the rigid wall at D is...Ch. 4.5 - The support consists of a solid red brass C83400...Ch. 4.5 - If there are n fibers, each having a...Ch. 4.5 - Prob. 4.49PCh. 4.5 - Prob. 4.50PCh. 4.5 - Prob. 4.51PCh. 4.5 - Prob. 4.52PCh. 4.5 - 4-53. Each of the three A-36 steel wires has the...Ch. 4.5 - 4-54. The 200-kg load is suspended from three A-36...Ch. 4.5 - The three suspender bars are made of A992 steel...Ch. 4.5 - Prob. 4.56PCh. 4.5 - 4-57. The rigid bar is originally horizontal and...Ch. 4.5 - Prob. 4.58PCh. 4.5 - 4-59. Two identical rods AB and CD each have a...Ch. 4.5 - *4-60. The assembly consists of two posts AD and...Ch. 4.5 - Prob. 4.61PCh. 4.5 - Prob. 4.62PCh. 4.5 - Prob. 4.63PCh. 4.5 - Prob. 4.64PCh. 4.5 - 4-65. Initially the A-36 bolt shank fits snugly...Ch. 4.5 - Prob. 4.66PCh. 4.5 - Prob. 4.67PCh. 4.6 - The C83400-red-brass rod AB and 2014-T6- aluminum...Ch. 4.6 - The assembly has the diameters and material...Ch. 4.6 - The rod is made of A992 steel and has a diameter...Ch. 4.6 - Prob. 4.71PCh. 4.6 - Prob. 4.72PCh. 4.6 - The pipe is made of A992 steel and is connected to...Ch. 4.6 - The bronze C86100 pipe has an inner radius of 0.5...Ch. 4.6 - The 40-ft-long A-36 steel rails on a train track...Ch. 4.6 - The device is used to measure a change in...Ch. 4.6 - The bar has a cross-sectional area A, length L,...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The wires AB and AC are made of steel, and wire AD...Ch. 4.6 - The cylinder CD of the assembly is heated from T1...Ch. 4.6 - The cylinder CD of the assembly is heated from T1=...Ch. 4.6 - The metal strap has a thickness t and width w and...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - If the allowable normal stress for the bar is...Ch. 4.9 - The steel bar has the dimensions shown. Determine...Ch. 4.9 - 4-90. Determine the maximum axial force P that can...Ch. 4.9 - Determine the maximum axial force P that can be...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - Prob. 4.93PCh. 4.9 - 4-94. The resulting stress distribution along...Ch. 4.9 - Prob. 4.95PCh. 4.9 - *4-96. The 10-mm-diameter shank of the steel bolt...Ch. 4.9 - The weight is suspended from steel and aluminum...Ch. 4.9 - The bar has a cross-sectional area of 0.5 in2 and...Ch. 4.9 - Prob. 4.99PCh. 4.9 - *4-100. The rigid beam is supported by a pin at A...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - Prob. 4.103PCh. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - Prob. 4.106PCh. 4.9 - Prob. 4.107PCh. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - Prob. 4.110PCh. 4.9 - The bar having a diameter of 2 in. is fixed...Ch. 4.9 - Determine the elongation of the bar in Prob.4108...Ch. 4.9 - Prob. 4.113PCh. 4 - The assembly consists of two A992 steel bolts AB...Ch. 4 - The assembly shown consists of two A992 steel...Ch. 4 - The rods each have the same 25-mm diameter and...Ch. 4 - Two A992 steel pipes, each having a...Ch. 4 - The force P is applied to the bar, which is made...Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The rigid link is supported by a pin at A and two...Ch. 4 - The joint is made from three A992 steel plates...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Let's consider an axially loaded member having solid circular cross-section and subjected to the shown loads. Determine the displacement of end C with respect to A. Note that section AB has a diameter of 30 mm and section BC has a diameter of 20 mm. both section are made of steel having a modulus of elasticity E of 200 GPa. 15 kN A 1 m B 5 kN 0.7 m C 10 kNarrow_forwardLet's consider a rod subjected to the shown axial forces. If we consider a linear elastic behavior, determine the axial force Fo so that the vertical displacement of end D is &= 0.6559 mm and Fc = 20 kN. Segments (1) and (2) are made of steel with a modulus of elasticity E = 200 GPa, while segment (3) is made of aluminum with a modulus of elasticity E= 70 GPa. The rod has a solid circular cross-section with the folowing diameters: D(1) = D[2) = 50 mm, D(3) = 30 m (1) A 1.8 m 40 kN B (2) 1.2 m C FC 1.6 m (3) D FDarrow_forwardQ3 The steel shaft, shown in the figure, is made from two segments: AC has a diameter of 30 mm and CB has a diameter of 55 mm. If it is fixed at its ends A and B, determine the magnitude of the applied torque T if the reaction at A is 75 N.m. Use G= 75 GPa. %3D 50 mm 25 mm T A B 1.5 m 0.75 m 1 marrow_forward
- The vertical shaft with a diameter of d = 20 mm is supported by a thrust collar that rests on a 21-mm-thick plate. The thrust collar is 16-mm thick. Assume that the load P causes a compressive stress of 190 MPa in the shaft. If the bearing stress between the thrust collar and the plate is limited to 35 MPa, determine the minimum outer diameter Dcollar that must be used for the thrust collar. Thrust collar area Plate Thrust collar d Dcollararrow_forwardThe solid shaft of radius r is subjected to a torque T. Determine the radius r of the inner core of the shaft that resists one-half of the applied torque (T>2). Solve the problem two ways: (a) by using the torsion formula, (b) by finding the resultant of the shear-stress distribution.arrow_forwardSolve the preceding problem (W 250 × 44.8) if the resultant force P equals 110 kN and E = 200 GPa.arrow_forward
- , Solve the preceding problem using the numerical data: /) = 90mm, h = 280 mm, d = 210 mm, q = 14 kN/m, and L = L2 m.arrow_forwardSomeone already solved this and the answr is .0212 and -0.025. My question is is it okay to solve this even if it is not in equilibrium? Why?arrow_forwardThe assembly consists of three titanium (Ti-6A1- 4V) rods and a rigid bar AC. The cross-section area of each rod is given in the figure. If a force of 60 kip is applied o the ring F, determine the horizontal displacement of point F. Hint: Refer to the textbook appendix for material properties. AEF 2 in² 1 ft = 60 kip F-2 ft- 2 ft A C 6 ft B AAB = 1 in² E ACD = 1.5 in² 6 ft Darrow_forward
- The simply supported joist is used in the construction of a floor for a building. In order to keep the floor low with respect to the sill beams C and D, the ends of the joists are notched as shown. If the allowable shear stress is tallow = 350 psi and the allowable bending stress is sallow = 1500 psi, determine the height h that will cause the beam to reach both allowable stresses at the same time. Also, what load P causes this to happen? Neglect the stressconcentration at the notch.arrow_forwardDetermine the nodal displacements at node 1, node 2, and node 3 as shown in the figure. One end of the bar assembly is applied with force and at the other end is fixed. The length of each element is 500 mm. The modulus of elasticity and area of the cross-section is given, E, = 200 GPa and A =125 mm² for element 1 and E, =100 GPa and A, = 125 mm? element 2. 1 2 2 3 50 kN 500 mm 500 mm (А) и, — 0, и, = 0,u, =3 mm,uz = 9 mm (B) и, — 0, и, = 2 mm,u, =6 mm (С) и, = 0,u, =1 mm, u, = 3 mm (D) u, = 0,u, = 0.5 mm,u, =3 mmarrow_forwardA machinery uses a helical tension spring with wire diameter of 3 mm and coil outside diameter of 35 mm. The spring has 9 total coils. The design shear stress is 500 MPa and the modulus of rigidity is 82 GPa. Determine the force that causes the body of the spring to its shear stress in N. Consider ground ends.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license