Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780133978216
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.23E
(a)
To determine
The electron contribution to molar specific heat capacity at constant volume of silver as a multiple of
(b)
To determine
The electron contribution to molar heat capacity at constant volume of silver as a fraction of the actual value for silver
(c)
To determine
whether the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Silver has a Fermi energy of 5.48 eV. Calculate the electron contribution to the molar heat capacity at constant volume of silver, CV, at 300 K. Express your result (a) as a multiple of R and (b) as a fraction of the actual value for silver, CV = 25.3 J / mol#K. (c) Is the value of CV due principally to the electrons? If not, to what is it due?
Silicon has a conductivity of 5×10-4 (Q.m)-1 when pure. How many
arsenic atoms/m3 are required so that the conductivity of 200 (Q .m)-1.
The mobility of electrons is O.13 (m2/V. Sec), mobility of holes is
0.05(m2/V.Sec)
O 2.4038*10^16 /m-3
O 9.6153*10^21/m-3
O 4*10^5 /m-3
O 9.4089*10^5 /m-3
O other:
Calculate the value of the Fermi energy for a specific metal when it contains 2.54x1028
free electrons per cubic meter (m, = 9.11x10-31 kg and h= 6.63x10-3ª J.s).
(A) 1.15 eV
(В) 3.1 еV
(С) 13.6 eV
(D) 0.50 eV
Chapter 42 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- A certain material has a molar mass of 20.0 g/mol, a Fermi energy of 5.00 eV, and 2 valence electrons per atom.What is the density (g/cm3)?arrow_forwardTo improve the semiconducting characteristics of GaAs, 1.31 x 10^15 atoms of Be are incorporated into the material. Be has an ionization energy of 0.6eV. In this doping process, is Be totally ionized or not? Display your proof. After the doping process, where can you find the Fermi energy level?arrow_forwardMetallic lithium has a bcc crystal structure. Each unit cell is a cube of side length a = 0.35 nm. (a) For a bcc lattice, what is the number of atoms per unit volume? Give your answer in terms of a. (Hint: How many atoms are there per unit cell?) (b) Use the result of part (a) to calculate the zero-temperature Fermi energy EF0 for metallic lithium. Assume there is one free electron per atom.arrow_forward
- Calculate the copper's mean free path. Let's say copper has a Fermi energy of 6.65 eV. 9.21 x1028 m-3 of electrons are present per unit volume. In copper, an electron has an effective mass of 1.51 times its rest mass. Copper has 5.9x107 S/m in conductivity.arrow_forwardSilicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of 1018 cm-3 a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density. Which type of semiconductor is obtained? b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.arrow_forwardThe Fermi energy of sodium is 3.23 eV. (a) Find the average energy Eav of the electrons at absolute zero. (b) What is the speed of an electron that has energy Eav ? (c) At what Kelvin temperature T is kT equal to EF ? (This is called the Fermi temperature for the metal. It is approximately the temperature at which molecules in a classical ideal gas would have the same kinetic energy as the fastest-moving electron in the metal.)arrow_forward
- Show stepsarrow_forwardSilicon atoms with a concentration of 7x 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017 cm-3 and N, = 7 x 101cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The donor concentration?arrow_forwardSilicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T= 300 K: N. = 4.7 x 1017cm-3 and N, = 7 x 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The acceptor concentration?arrow_forward
- The Fermi energy of aluminum is 11.6 eV; its density and molar mass are 2.70 g/cm3 and 27.0 g/mol, respectively. From these data, determine the number of conduction electrons per atom.arrow_forwardQ3/ An experiment was conducted to find the relationship between the specific heat of potassium metal and the temperature, and it was found that this relationship takes the following formula at low temperatures 2.08 +2.57 T2 What is the value of each of: (1) the fermi temperature of potassium? (b) Debye temperature of potassium? Note that specific heat is measured in units of mj / mol / K.arrow_forwardn=1 11. The ground state energy of a free Fermi gas comprising N particles in a box of volume V in terms of Part = N the Fermi energy Ep is NORT A) NEF B) NEF A) PR B) P₁ = e C) P₁₁ = e D) Pn=f NEF D) NEF E) 2 N 12. For a given macrostate of a system, let P be the probability that the system is in the microstate 14 >. The corresponding Gibbs entropy is given by S-k En PinPn. We can obtain the familiar Boltzmann entropy S = k In from the given Gibbs entropy if the probability distribution is, (♫ is the number of accessible microstates), = hw WEE = Ef- nt & hun) 1 A) E B) E2 2 N ~/M D) E E) Independent of energy E + 2 E) P₁ = 2² = 13.For a system with linear dispersion E(k)= hvk, in three dimensions, the density of states at energy E depends on energy as + 1 h mk + / buk 2n=N M/M. rim Ef = 1/1/₂ n = q S = -x En Pulupn. S = Kenn -* & Plukk € (K) = hvkarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning