Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 9P
(a)
To determine
The radius of electron’s Bohr orbit.
(b)
To determine
The de broglie wavelength of electron.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A hydrogen atom is in its second excited state, corresponding to n = 3. Find (a) the radius of the electron’s Bohr orbit and (b) the de Broglie wavelength of the electron in this orbit.
An electron is in the nth Bohr orbit of the hydrogen atom. (a) Show that the period of the electron is T = n3t0 and determine the numerical value of t0. (b) On average, an electron remains in the n = 2 orbit for approximately 10 ms before it jumps down to the n = 1 (ground-state) orbit. How many revolutions does the electron make in the excited state? (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth’s motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as “living for a long time.”
(a) Using the Bohr model, calculate the speed of the electron in a hydrogen atom in the n = 1, 2, and 3 levels. (b) Calculate the orbital period in each of these levels. (c) The average lifetime of the first excited level of a hydrogen atom is 1.0 * 10-8 s. In the Bohr model, how many orbits does an electron in the n = 2 level complete before returning to the ground level?
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 41.3 - Prob. 41.1QQCh. 41.3 - Prob. 41.2QQCh. 41.4 - Prob. 41.3QQCh. 41.4 - Prob. 41.4QQCh. 41.8 - Prob. 41.5QQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5P
Ch. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37APCh. 41 - Prob. 39APCh. 41 - Prob. 40APCh. 41 - Prob. 41APCh. 41 - Prob. 42APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51CPCh. 41 - Prob. 52CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardDerive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers Z1 and Z2.arrow_forwardIn the Bohr model of the hydrogen atom, what is the de Broglie wavelength of the electron when it is in (a) the n = 1 level and (b) the n = 4 level? In both cases, compare the de Broglie wavelength to the circumference 2prn of the orbit.arrow_forward
- The de Broglie wavelength of an electron in a hydrogen atom is1.66 nm. Identify the integer n that corresponds to its orbitarrow_forwardConsidering the Bohr’s model, given that an electron is initially located at the ground state (n=1n=1) and it absorbs energy to jump to a particular energy level (n=nxn=nx). If the difference of the radius between the new energy level and the ground state is rnx−r1=5.247×10−9rnx−r1=5.247×10−9, determine nxnx and calculate how much energy is absorbed by the electron to jump to n=nxn=nx from n=1n=1. A. nx=9nx=9; absorbed energy is 13.4321 eV B. nx=10nx=10; absorbed energy is 13.464 eV C. nx=8nx=8; absorbed energy is 13.3875 eV D. nx=20nx=20; absorbed energy is 13.566 eV E. nx=6nx=6; absorbed energy is 13.22 eV F. nx=2nx=2; absorbed energy is 10.2 eV G. nx=12nx=12; absorbed energy is 13.506 eV H. nx=7nx=7; absorbed energy is 13.322 eVarrow_forwarda) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forward
- A) By what factor is the uncertainty of the electron's position(1.36×10-4 m) larger than the diameter of the hydrogen atom?(Assume the diameter of the hydrogen atom is 1.00×10-8 cm.) B) Use the Heisenberg uncertainty principle to calculate Δx for a ball (mass = 122 g, diameter = 8.50 cm) with Δv = 0.425 m/s. C) The uncertainty of the (above) ball's position is equal to what factor times the diameter of the ball?arrow_forwardThe wave function for the Is state of an electron in the hydrogen atom is VIs(P) = e-p/ao where ao is the Bohr radius. The probability of finding the electron in a region W of R³ is equal to J, P(x, y, 2) dV where, in spherical coordinates, p(p) = |V1s(P)² Use integration in spherical coordinates to show that the probability of finding the electron at a distance greater than the Bohr radius is equal to 5/e = 0.677. (The Bohr radius is ao =5.3 x 10-1" m, but this value is not needed.)arrow_forwardWhat is the orbital radius of the n = 3 excited state in the Bohr model of the hydrogen atom in nanometers? The ground-state radius of the hydrogen atom is 0.529 × 10-10 m. Please give your answer with 3 decimal places.arrow_forward
- What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardA Bohr-like atom has a ground state energy (n=1) of -41.4eV. An electron makes a transition from the n=4 state to the n=2 state. The emitted photon is then incident onto a metal surface with a work function equal to 3.34eV. What is the momentum (N*s) of the emitted photon?arrow_forwardThree energy levels exist in a particular atom (not necessarily hydrogen-like with a single electron [Bohr model doesn’t apply]) such that when an electron transitions from the n=3 energy level to n=2, a photon of wavelength 600 nm is emitted. When an electron transitions from n=3 to n=1 a photon of wavelength 200 nm is emitted. The wavelength of the emitted photon when an electron transitions from n=2 to n=1 is ____ nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning