![Probability and Statistical Inference (9th Edition)](https://www.bartleby.com/isbn_cover_images/9780321923271/9780321923271_largeCoverImage.gif)
Probability and Statistical Inference (9th Edition)
9th Edition
ISBN: 9780321923271
Author: Robert V. Hogg, Elliot Tanis, Dale Zimmerman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.1, Problem 8E
In a smoking survey among boys between the ages of 12 and 17, 78% prefer to date nonsmokers, 1% prefer to date smokers, and 21 % don’t care. Suppose seven such boys are selected randomly. Let X equal the number who prefer to date nonsmokers and Y equal the number who prefer to date smokers.
(a) Determine the joint pmf of X and Y. Be sure to include the support of the pmf.
(b) Find the marginal pmf of X. Again include the supp ort.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
100 identical balls are rolling along a straight line. They all have speed equal to v, but some of them might move in opposite directions. When two of them collide they immediately switch their direction and keep the speed v. What is the maximum number of collisions that can happen?
Let f(w) be a function of vector w Є RN, i.e. f(w) = 1+e Determine the first derivative and matrix of second derivatives off with respect to w.
Let A Є RN*N be a symmetric, positive definite matrix and bЄ RN a vector. If x ER, evaluate the integral Z(A,b) = e¯xAx+bx dx as a function of A and b.
John throws a fair die with faces labelled 1 to 6. ⚫ He gains 10 points if the die shows 1. ⚫ He gains 1 point if the die shows 2 or 4. • No points are allocated otherwise. Let X be the random variable describing John's gain at each throw. Determine the variance of X.
Female
Male
Totals
Less than High School
Diploma
0.077
0.110
0.187
High School Diploma
0.154
0.201
0.355
Some College/University
0.141
0.129
0.270
College/University Graduate
0.092
0.096
0.188
Totals
0.464
0.536
1.000
Female
Male
Totals
Less than High School
Diploma
0.077
0.110
0.187
High School Diploma
0.154
0.201
0.355
Some College/University
0.141
0.129
0.270
College/University Graduate
0.092
0.096
0.188
Totals
0.464
0.536
1.000
Chapter 4 Solutions
Probability and Statistical Inference (9th Edition)
Ch. 4.1 - For each of the following functions, determine the...Ch. 4.1 - Roll a pair of four-sided dice, one red and one...Ch. 4.1 - Let the joint pmf of X and Y be defined by...Ch. 4.1 - Select an (even) integer randomly from the set...Ch. 4.1 - Each part of Figure 4.1-5 depicts the sample space...Ch. 4.1 - The torque required to remove bolts in a steel...Ch. 4.1 - A particle starts at (0,0) and moves in one-unit...Ch. 4.1 - In a smoking survey among boys between the ages of...Ch. 4.1 - A manufactured item is classified as good, a...Ch. 4.2 - Prob. 1E
Ch. 4.2 - Prob. 2ECh. 4.2 - Roll a fair four-sided die twice. Let X equal the...Ch. 4.2 - Let X and Y have a trinomial distribution with...Ch. 4.2 - Prob. 5ECh. 4.2 - The joint pmf of X and Y is f(x,y)=16,0x+y2, where...Ch. 4.2 - Let the joint pmf of X and Y be...Ch. 4.2 - A certain raw material is classified as to...Ch. 4.2 - Prob. 9ECh. 4.2 - If the correlation coefficient exists, show that...Ch. 4.3 - Let X and Y have the joint pmf...Ch. 4.3 - Let the joint pmf f(x,y) of X and Y be given by...Ch. 4.3 - Let W equal the weight of laundry soap in a...Ch. 4.3 - The gene for eye color in a certain male fruit fly...Ch. 4.3 - Let X and Y have a trinomial distribution with...Ch. 4.3 - An insurance company sells both homeowners...Ch. 4.3 - Using the joint pmf from Exercise 4.2-3, find the...Ch. 4.3 - A fair six-sided die is rolled 30 independent...Ch. 4.3 - Let X and Y have a uniform distribution on the set...Ch. 4.3 - Let fX(x)=110,x=0,1,2,...,9, and...Ch. 4.3 - Suppose that X has a geometric distribution with...Ch. 4.5 - Let X and Y have a bivariate normal distribution...Ch. 4.5 - Show that the expression in the exponent of...Ch. 4.5 - Let X and Y have a bivariate normal distribution...Ch. 4.5 - Let X and Y have a bivariate normal...Ch. 4.5 - Let X denote the height in centimeters and Y the...Ch. 4.5 - For a freshman taking introductory statistics and...Ch. 4.5 - For a pair of gallinules, let X equal the weight...Ch. 4.5 - Let X and Y have a bivariate normal distribution...Ch. 4.5 - Let X and Y have a bivariate normal distribution....Ch. 4.5 - In a college health fitness program, let X denote...Ch. 4.5 - For a female freshman in a health fitness program,...Ch. 4.5 - Prob. 12ECh. 4.5 - An obstetrician does ultrasound examinations on...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Female Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forwardFemale Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forward6.54 Let Y₁, Y2,..., Y, be independent Poisson random variables with means 1, 2,..., An respectively. Find the a probability function of Y. b conditional probability function of Y₁, given that Y = m. Y₁ = m. c conditional probability function of Y₁+Y2, given that 6.55 Customers arrive at a department store checkout counter according to a Poisson distribution with a mean of 7 per hour. In a given two-hour period, what is the probability that 20 or more customers will arrive at the counter? 6.56 The length of time necessary to tune up a car is exponentially distributed with a mean of .5 hour. If two cars are waiting for a tune-up and the service times are independent, what is the probability that the total time for the two tune-ups will exceed 1.5 hours? [Hint: Recall the result of Example 6.12.] 6.57 Let Y, Y2,..., Y,, be independent random variables such that each Y, has a gamma distribution with parameters a, and B. That is, the distributions of the Y's might have different a's, but…arrow_forward
- 6.82 6.83 6.84 6.85 *6.86 6.87 If Y is a continuous random variable and m is the median of the distribution, then m is such that P(Ym) = P(Y ≥ m) = 1/2. If Y₁, Y2,..., Y, are independent, exponentially dis- tributed random variables with mean ẞ and median m, Example 6.17 implies that Y(n) = max(Y₁, Y., Y) does not have an exponential distribution. Use the general form of FY() (y) to show that P(Y(n) > m) = 1 - (.5)". Refer to Exercise 6.82. If Y₁, Y2,..., Y,, is a random sample from any continuous distribution with mean m, what is P(Y(n) > m)? Refer to Exercise 6.26. The Weibull density function is given by -my" m-le-y/a f(y)= α 0. y > 0, elsewhere, where a and m are positive constants. If a random sample of size n is taken from a Weibull distributed population, find the distribution function and density function for Y(1) = min(Y1, Y2,Y). Does Y(1) = have a Weibull distribution? Let Y₁ and Y2 be independent and uniformly distributed over the interval (0, 1). Find P(2Y(1) 0, elsewhere,…arrow_forward6.26 The Weibull density function is given by e-y/a f(y) = α 0. y > 0, elsewhere, where a and m are positive constants. This density function is often used as a model for the lengths of life of physical systems. Suppose Y has the Weibull density just given. Find a the density function of UY". b E(Y) for any positive integer k. 6.27 Let Y have an exponential distribution with mean ẞ. 6.28 6.29 a Prove that W = √Y has a Weibull density with α = ẞ and m = 2. b Use the result in Exercise 6.26(b) to give E(Yk/2) for any positive integer k. Let Y have a uniform (0, 1) distribution. Show that U = -2ln(Y) has an exponential distri- bution with mean 2. The speed of a molecule in a uniform gas at equilibrium is a random variable V whose density function is given by 6.30 6.31 6.32 f(v) = av²e-by², v > 0, where b = m/2kT and k, T, and m denote Boltzmann's constant, the absolute temperature, and the mass of the molecule, respectively. a Derive the distribution of W = mV2/2, the kinetic energy of…arrow_forwardQIA Let F-4c24, countible or, A, countible), show that is o-algebra. B Let (Fne N) is family of a-algebra on 2, prove that F. o-algebra Q2: Prove that: 1. X, is martingale -esin 2. M, -e sin B,, is martingale by using Ito formula Q3: A Let X, has stochastic differential with drift p(x)=-bx + c, and diffusion o²(x)=4x, let Y√X,, where X, ≥0, find dr B: Let X, -(-s), Ito integral process, find dx, and [x.xko). Q4: Let Y, =[x,dB, is Ito integral, such that X, is nonrandom process, find: التوزيع 1. The distribution of Y 2. The moment generating function of Y,.arrow_forward
- Solve the following Probability Problem (solve all parts) HW 2.x. (Headless Hunt)The Headless Hunt is an organization of 88 Hogwarts ghosts so elite thateven Nearly Headless Nick was annually denied admission for decades,despite being The Gryffindor ghost. The ghosts love playing sports anddecided to get together and have either a Head Polo tournament or aHorseback Head-Juggling tournament. However, even if they are ghosts,they still have jobs so some of them might have an urgent haunting as-signment. In order for no one to be left behind they need to be able tosplit into teams of equal numbers. Head polo teams consist of 4 playerswhereas Horseback Head-Juggling teams have 11 players. Assume thatany number of them from 1 to 88 show up with equal probability. a) What is the probability they will be able to play one of the twotournaments?b) If in addition to the previous 2 sports there was one more option, atournament in Headless bowling which is played in teams of 8 players,what would…arrow_forward42. Consider the following joint probability table. B₁ B2 B3 B4 A 0.09 0.22 0.15 0.20 A 0.03 0.10 0.09 0.12arrow_forwardEXERCISES 4.3 Mechanics 41. Consider the following contingency table. B B A 26 34 Ac 14 26 a. Convert the contingency table into a joint probability table. b. What is the probability that A occurs? ن فة What is the probability that A and B occur? d. Given that B has occurred, what is the probability that A occurs? e. Given that A has occurred, what is the probability that B occurs? f. Are A and B mutually exclusive events? Explain. g. Are A and B independent events? Explain. 42. Consider the following joint probability table. B₁ B2 B3 BA A 0.09 0.22 0.15 0.20 Ac 0.03 0.10 0.09 0.12arrow_forward
- Can u make a room for mearrow_forwardالتمرين الأول: 08) نقاط) نرمي رباعي وجوه مرقم من ا إلى 4 بحيث إحتمال وجوهه يحقق العلاقة التالية: - 24 = (3)P(1) = ) = 4P -1 أحسب احتمال كل وجه. -2 (١ أحسب احتمال الحادثة : الحصول على عدد زوجي). ب استنتج احتمال الحادثة ة. -3 أحسب احتمال الحادثة B الحصول على عدد د أكبر أو يساوي (2)arrow_forwardPlease solve the following Probability problem. Show all work and solve all parts that are asked: HW 1.y.(Yutnori) Yutnori is played by 2 (groups of) players on a gameboard with pieces thatmove around. Each player takes turns throwing yut sticks - each stick hastwo sides, round and flat, which makes the stick roll. Five combinationsare possible with yut sticks: do, gae, geol, yut and mo. A player achievinga yut or mo is allowed to roll again. Combinations and the number ofmoves they allow on the gameboard are presented in Figure 3 (flat sideup is blank and round side up is filled with x-es). Assuming each of the 4 Yut sticks falls on both of its sides with equalprobability, what is the probability that:a) you roll a yut?b) you roll a geol ?c) you get a second roll?d) you move 6 spaces in your first turn?In reality, a typical Yut stick is designed so that the probability of flat sidefacing up is around 60%. Try to think of what the previous probabilitieswould be in this case.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Hypothesis Testing - Solving Problems With Proportions; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=76VruarGn2Q;License: Standard YouTube License, CC-BY
Hypothesis Testing and Confidence Intervals (FRM Part 1 – Book 2 – Chapter 5); Author: Analystprep;https://www.youtube.com/watch?v=vth3yZIUlGQ;License: Standard YouTube License, CC-BY