COMPUTER SYSTEMS&MOD MSGT/ET SA AC PKG
COMPUTER SYSTEMS&MOD MSGT/ET SA AC PKG
3rd Edition
ISBN: 9780134671123
Author: Bryant
Publisher: PEARSON
Question
Book Icon
Chapter 4.1, Problem 4.2PP

A.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

B.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

C.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

D.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

E.

Program Plan Intro

Data movement instructions:

  • The different instructions are been grouped as “instruction classes”.
  • The instructions in a class performs same operation but with different sizes of operand.
  • The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
  • The class has 4 instructions that includes:
    • movb:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 1 byte data size.
    • movw: 
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 2 bytes data size.
    • movl:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 4 bytes data size.
    • movq:
      • It copies data from a source location to a destination.
      • It denotes an instruction that operates on 8 bytes data size.

Unary and Binary Operations:

  • The details of unary operations includes:
    • The single operand functions as both source as well as destination.
    • It can either be a memory location or a register.
    • The instruction “incq” causes 8 byte element on stack top to be incremented.
    • The instruction “decq” causes 8 byte element on stack top to be decremented.
  • The details of binary operations includes:
    • The first operand denotes the source.
    • The second operand works as both source as well as destination.
    • The first operand can either be an immediate value, memory location or register.
    • The second operand can either be a register or a memory location.

Jump Instruction:

  • The “jump” instruction causes execution to switch to an entirely new position in program.
  • The “label” indicates jump destinations in assembly code.
  • The “je” instruction denotes “jump if equal” or “jump if zero”.
    • The comparison operation is performed.
    • If result of comparison is either equal or zero, then jump operation takes place.
  • The “ja” instruction denotes “jump if above”.
    • The comparison operation is performed.
    • If result of comparison is greater, then jump operation takes place.
  • The “pop” instruction resumes execution of jump instruction.
  • The “jmpq” instruction jumps to given address. It denotes a direct jump.

Blurred answer
Students have asked these similar questions
I would like to get help to resolve the following case
Last Chance Securities The IT director opened the department staff meeting today by saying, "I've got some good news and some bad news. The good news is that management approved the payroll system project this morning. The new system will reduce clerical time and errors, improve morale in the payroll department, and avoid possible fines and penalties for noncompliance. The bad news is that the system must be installed by January 1st in order to meet new federal reporting rules, all expenses from now on must be approved in advance, the system should have a modular design if possible, and the vice president of finance would like to announce the new system in a year-end report if it is ready by mid-December." Tasks 1. Why is it important to define the project scope? How would you define the scope of the payroll project in this case? 2. Review each constraint and identify its characteristics: present versus future, internal versus exter- nal, and mandatory versus desirable. 3. What…
2. Signed Integers Unsigned binary numbers work for natural numbers, but many calculations use negative numbers as well. To deal with this, a number of different methods have been used to represent signed numbers, but we will focus on two's complement, as it is the standard solution for representing signed integers. 2.1 Two's complement • Most significant bit has a negative value, all others are positive. So, the value of an n-digit -2 two's complement number can be written as: Σ2 2¹ di 2n-1 dn • Otherwise exactly the same as unsigned integers. i=0 - • A neat trick for flipping the sign of a two's complement number: flip all the bits (0 becomes 1, or 1 becomes 0) and then add 1 to the least significant bit. • Addition is exactly the same as with an unsigned number. 2.2 Exercises For questions 1-3, answer each one for the case of a two's complement number and an unsigned number, indicating if it cannot be answered with a specific representation. 1. (15 pts) What is the largest integer…

Chapter 4 Solutions

COMPUTER SYSTEMS&MOD MSGT/ET SA AC PKG

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage