Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 9OQ
To determine
The de-Broglie wavelength of the electron accelerated from rest.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 3.30 × 104 m/s?
m
(b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 1.92 × 108 m/s?
m
m
(c) What is the de Broglie wavelength for an electron having a kinetic energy of 3.15 MeV?
During a certain experiment, the de Broglie wavelength of an electron is 400 nm = 4.0 ✕ 10−7 m, which is the same as the wavelength of violet light. How fast (in m/s) is the electron moving?
During a certain experiment, the de Broglie wavelength of an electron is 460 nm = 4.6 ✕ 10−7 m, which is the same as the wavelength of blue light. How fast (in m/s) is the electron moving?
Chapter 40 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.2 - Prob. 40.4QQCh. 40.3 - Prob. 40.5QQCh. 40.5 - Prob. 40.6QQCh. 40.6 - Prob. 40.7QQCh. 40 - Prob. 1OQCh. 40 - Prob. 2OQCh. 40 - Prob. 3OQ
Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardWhat is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardA 600-nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.17 eV are emitted. Determine (a) the work function and (b) the cutoff frequency of the surface. (c) What is the stopping potential when the surface is illuminated with light of wavelength 400 nm?arrow_forward
- What is the de Broglie wavelength of an electron accelerated from rest through a potential difference of 50.0 V and 50. 0 kV?arrow_forwardDuring a certain experiment, the de Broglie wavelength of an electron is 470 nm = 4.7 ✕ 10^−7 m, which is the same as the wavelength of blue light. How fast (in m/s) is the electron moving? m/sarrow_forwardDe Broglie postulated that the relationship ? = h/p is valid for relativistic particles. What is the de Broglie wavelength for a (relativistic) electron having a kinetic energy of 3.31 MeV? answer in marrow_forward
- An electron is accelerated from rest through a potential difference of 3.19 x 102 V. Determine the following for the electron. (a) speed (ignore relativistic effects) m/s (b) de Broglie wavelength marrow_forwardA scientist wants to use an electron microscope to observe details on the order of 0.25 nm. Through what potential difference must the electrons be accelerated from rest so that they have a de Broglie wavelength of this magnitude?arrow_forwardA beam of electrons is accelerated from rest through a potential difference of 0.100 kV and then passes through a thin slit. When viewed far from the slit, the diffracted beam shows its first minimum at ± 14.6° from the original direction of the beam. A) What is the velocity of the electrons? B) What is the de Broglie wavelength of the electrons?arrow_forward
- During a certain experiment, the de Broglie wavelength of an electron is 440 nm = 4.4 x 10-7 m, which is the same as the wavelength of violet light. How fast (in m/s) is the electron moving? m/sarrow_forwardStarting from rest, an electron accelerates through a potential difference of 49 V. What is its de Broglie wavelength? ( h = 6.63 × 10 −34 J ⋅s, m e = 9.11 × 10 −31 kg, and 1 eV = 1.60 × 10 −19 J)arrow_forwardAn electron has a kinetic energy of 4.1 × 10–¹³ J. 46. What is the electron's speed? (a) 0.960c (b) 0.968c (c) 0.972c (d) 0.980c (e) 0.986c 47. What is the de Broglie wavelength of the electron described? (a) 4.09 × 10-13 m (b) 4.94 × 10-13m (c) 5.42 × 10-13 m (d) 6.25 × 10-13 m (e) 7.81 x 10-13marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax