Concept explainers
(a)
The maximum fractional energy loss for the
(a)
Answer to Problem 36P
The maximum fractional energy loss for the
Explanation of Solution
Write the Compton shift equation.
Here,
The energy of the gamma ray and its wavelength are inversely proportional. The maximum energy loss will occur for maximum increase in wavelength of the gamma ray.
The value of
Substitute
Write the equation for the fractional energy loss of the Gamma ray.
Here,
Write the equation for the energy of incident gamma ray.
Here,
Write the equation for the energy of the scattered gamma ray.
Here,
Put equations (IV) and (V) in equation (III).
Write the equation for the Compton shift in the gamma ray’s wavelength.
Rewrite equation (VII) for
Put equation (VII) in the numerator of equation (VI) and replace denominator of equation (VI) by (VIII).
Rewrite equation (IV) for
Put equations (II) and (X) in equation (IX).
Conclusion:
The value of
Substitute
Therefore, the maximum fractional energy loss for the
(b)
The maximum fractional energy loss for the
(b)
Answer to Problem 36P
The maximum fractional energy loss for the
Explanation of Solution
Equation (XI) can be used to find the fractional loss of the gamma ray when it is Compton scattered from the free proton by using the mass of the proton in the equation.
Conclusion:
The mass of proton is
Substitute
Therefore, the maximum fractional energy loss for the
Want to see more full solutions like this?
Chapter 40 Solutions
Physics for Scientists and Engineers With Modern Physics
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College