Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 4OQ
(i)
To determine
The new value of temperature of the filament.
(ii)
To determine
The new value of wavelength emitted with highest intensity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The operating temperature of an indirectly heated filament of a vacuum tube is around 1050K. At what wavelength will it radiate maximum? Given b=0.288cm K.
Calculate the velocity (in m/s) of an electron that has a wavelength of 8.76 µm.
m/s
(b)
Through what voltage (in V) must the electron be accelerated to have this velocity? (Assume the electron starts at rest.)
V
Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.2 - Prob. 40.4QQCh. 40.3 - Prob. 40.5QQCh. 40.5 - Prob. 40.6QQCh. 40.6 - Prob. 40.7QQCh. 40 - Prob. 1OQCh. 40 - Prob. 2OQCh. 40 - Prob. 3OQ
Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a laser pulse has an average duration of 5.00 femtoseconds and an average energy of 1.81 eV, and it has an uncertainty of 13.8%. What is the highest energy you can observe for a photon in the pulse? (in eV)arrow_forward| 1+ 19. An electron (mass m) with initial velocity i = voi + voj is in an electric field É = -E,k. If 1o is initial de-Broglie wavelength of electron, its de-Broglie wavelength at time t is given by do a. A = 1+ m2 t? b. A= 1+ t2 m²u λο c. A = 1+ t2 2m² v do d. A = 2+arrow_forwardWhen we illuminate lead with ultraviolet light with a wavelength of 250 nm, suppose we find the maximum potential difference developed between the plates in the experimental setup shown in the figure to be 0.82 volts. From these data and the accepted value of hc, find the potential difference between the plates if the wavelength is 215 nm. Also find W for lead.arrow_forward
- The work function of cesium is 1.6 x 10-19 J. Calculate the maximum speed of the electrons emitted when yellow light is used (λ = 0.589 μm), in meters per second. Use three significant figures.arrow_forwardA nickel crystal’s work function is measured to be 5.22 eV at 25°C. As the temperature increases by 300°C, the work function drops by 50 meV. By how much does this shift the threshold wavelength for photoelectric emission?arrow_forwardA certain metal has a work function of 233.0 kJ per mole of e_. What wavelength of electromagnetic radiation (in nm) must be directed at the surface in order for electrons to be ejected with a de Broglie wavelength of 14.18 angstroms (Å) 1 Å = 1×10-10 metersarrow_forward
- The minimum wavelength of electromagnetic radiation that is capable of removing electrons from the surface of barium metal is 693 nm.i. Calculate the work function for barium metal in kilojoules per mole of electrons ejected. If a light source with a frequency of 3.75x10^14 s‒1 is directed at the surface of barium metal, what will be the maximum kinetic energy of the ejected electrons?arrow_forwardThe De Broglie wavelength of 1 mg grain of sand blown by a wind at the speed of m/s is .... (h = 6.63 × 10-34 S.I. unit) (а) 33.15 х 10 36 m (b) 33.15 х 10-33 (c) 33.15 × 10-30 m (d) 33.15 x 1030 marrow_forwardThe de Broglie wavelength of an electron has to do with spatial resolution of an electron microscope, which is often expressed in the unit of length Å (Angstrom). The 1 V potential difference causes an electron to gain kinetic energy EK of 1 electron Volt (eV). In the SI units, kinetic energy in eV must be converted to Joules. The conversion factor is 1 eV = 1.6 x 10-19 Joule. And, the formula for the wavelength is: λ = h / p = h / √(2 m EK) where m is electron mass. Calculate the de Broglie wavelength of an electron (in Å) when the electron is accelerated from rest through a potential difference of: a) 1 kV = 1,000 V (a low resolution setting of microscope), b) 10 kV = 10,000 V (intermediate resolution). c) 100 kV = 100,000 V (high resolution),arrow_forward
- The threshold of dark-adapted (scotopic) vision is 4.5 ✕ 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 7.9 mm, how many photons per second enter the eye? photons/sarrow_forwardThe spacing between atomic planes in a crystal is 0.110 nm. If 12.0 keV x rays are diffracted by this crystal, what are the angles of (a) first-order and (b) second-order diffraction?arrow_forwardA 100-W bulb emits red light (1 = 700 nm) uniformly in all directions. a) How many photons are emitted by the bulb each second? b) A dark-adapted eye can sense this light if as few as 50 photons per second enter the pupil. What is the largest distance from the bulb that light can be sensed? { Assume a pupil diameter of 5 mm. }arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College