Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 11OQ
(i)
To determine
The particle which possess rest energy.
(ii)
To determine
The particle having charge.
(iii)
To determine
The particle carrying energy.
(iv)
To determine
The particle which carry momentum.
(v)
To determine
The particle which move at the speed of light.
(vi)
To determine
The particle that have a wavelength that characterizes its motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compare the wavelengths of an electron (mass = 9.11*10-31 kg) and a proton (mass = 1.67*10-27 kg), each having (a) a speed of 3.0*106 m/s; (b) a kinetic energy of 2.5*10-15 J.
(a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s
(b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.
A light source emits a beam of photons, each of which has a momentum of 2.0 x 10-29 kg-m/s. (a) What is the frequency of the photons?
(b) To what region of the electromagnetic spectrum do the photons belong?
(a) Number i
(b)
eTextbook and Media
Units
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.2 - Prob. 40.4QQCh. 40.3 - Prob. 40.5QQCh. 40.5 - Prob. 40.6QQCh. 40.6 - Prob. 40.7QQCh. 40 - Prob. 1OQCh. 40 - Prob. 2OQCh. 40 - Prob. 3OQ
Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Solar panels are a technology that utilize the the photovoltaic effect - a phenomenon very similar to the photoelectric effect! In the photoelectric effect, light is shone on a material's surface. If the wavelength of the light is short enough to supply the amount of energy needed to ionize an atom, then electrons are completely ejected from the material's surface with some nonzero kinetic energy. In the photovoltaic effect, electrons detached from atoms upon the absorption of a photon remain in the bulk material instead of being completely ejected. The electrons freed by the interaction of the sunlight with the semiconductor material creates an electron flow within the absorbing material (typically Silicon) as the free electrons move together around an external circuit. This current, in conjunction with an internal electric field set up by the combination of materials in the solar panel (which can be thought of as a small battery supplying a voltage), allows for the generation of…arrow_forwardA light source emits a beam of photons, each of which has a momentum of 6.4 x 10-29 kg-m/s. (a) What is the frequency of the photons? (b) To what region of the electromagnetic spectrum do the photons belong? (a) Number Unitsarrow_forwardA(n) microwave photon has a wavelength of 9.20 cm. Find the momentum, the frequency, and the energy of the photon in electron volts. (a) the momentum kg • m/s (b) the frequency Hz (c) the energy of the photon in electron volts evarrow_forward
- Pulsed lasers have many applications, but are very complicated to construct. One problem is chromatic aberration, another is aligning the components. Commonly available laser systems can produce 1 fs (10-¹4 s) pulses. a) how far does light travel in 1 fs? b) If the energy per pulse is 100 mJ, what's the power per pulse (in Watts)? c) calculate the (minimum) spread of frequencies required to produce a 1 fs pulse. d) if the center wavelength is 1 um, what is the range of wavelengths contained in a single pulse? e) common varieties of optical glass have a dispersion An/A2 = 0.025/micron. 1) if the index of refraction is 1.51 for λ = 1 um, what is the value of 'n' for the upper and lower wavelength? 2) the focal length of a lens is inversely proportional to the index of refraction: 1/f~ (n-1). What is the ratio of the focal lengths for the two extreme wavelengths? 3) how much longitudinal chromatic aberration (the difference in focal length between two colors) is there for a 100 mm focal…arrow_forwardV 20 + Imagine a photon that was determined to have a wavelength of 150 nm. Remembering that the speed of light is 3*10^8 m/s, what is the frequency of that light in units of Hz? (Provide only the number with commas to help count off orders of ten accurately, do not use scientific notation) A Moving to another question will save this response. « < Question 7 of 9 I 2:01 hp 女 23 $ % backspa- 6. 7 8. 9. i y e j k d farrow_forwardFind the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 × 10-¹⁹ J. (a) a photon having a frequency of 7.60 × 10¹7 Hz 3.1E+3 eV (b) a photon having a wavelength of 4.60 x 10² nm X eV 2.95arrow_forward
- The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤ hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function.Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forwardB8arrow_forward
- (a) Calculate the wavelength of light in vacuum that has a frequency of 5.37 x 10¹5 Hz. nm (b) What is its wavelength in ethyl alcohol? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ethyl alcohol? O The energy of the photon changes. O The energy of the photon does not change. Explain.arrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forwardConsider the four scenarios involving visible light. In scenario A, visible light has a wavelength of 729.9 nm.729.9 nm. Determine its frequency, energy per photon, and color. frequency: s−1−1 energy per photon: J The visible light in scenario A is In scenario B, visible light has a frequency of 5.695×1014 s−1.5.695×1014 s−1. Determine its wavelength, energy per photon, and color. wavelength: nm energy per photon: J The visible light in scenario B is In scenario C, visible light is in the middle of the yellow region of the visible spectrum. Estimate its wavelength, frequency, and energy per photon. wavelength: nm frequency: s−1−1 energy per photon: J In scenario D, visible light has a photon energy of 4.346×10−19 J.4.346×10−19 J. Determine its wavelength, frequency, and color. wavelength: nm frequency:…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON