Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 37P
To determine
The regions of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The sky exhibits the color blue due to the scattering of sunlight by air molecules. The blue light has a frequency of about 7.5 x 10^14 Hz.a.) What is the wavelength (in nm) associated with this radiation?
b.) How much is the energy (in Joules) of a single photon associated with this frequency?
Suppose a photon has a momentum of 5.4 × 10-29 kg⋅m/s.
A. What is the wavelength of such a photon in micrometers?
B. Find its energy in electron volts.
Your answer is partially correct.
A spectral emission line is electromagnetic radiation that is emitted in a wavelength range narrow enough to be taken as a single
wavelength. One such emission line that is important in astronomy has a wavelength of 21 cm. What is the photon energy in the
electromagnetic wave at that wavelength?
Number
9.465714286
Units
eV
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.2 - Prob. 40.4QQCh. 40.3 - Prob. 40.5QQCh. 40.5 - Prob. 40.6QQCh. 40.6 - Prob. 40.7QQCh. 40 - Prob. 1OQCh. 40 - Prob. 2OQCh. 40 - Prob. 3OQ
Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A helium-neon laser emits a light beam with a wavelength of 633 nm. The power of the laser beam is 1.0 mW. What is the energy of one photon of laser light? How many photons does the laser emit each second?arrow_forwardThe wavelengths of visible light range from approximately 400400 to 750 nm750 nm. Part (a) What is the minimum energy for a photon in this range? Give your answer in electron volts. Part (b) What is the maximum energy for a photon in this range? Give your answer in electron volts.arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forward
- A photon has a frequency of 7.50 x 10141014 Hz, a. Determine the energy and the momentum of this photon. b. If all the energy of this photon were to be converted to mass, determine the equivalent mass for the particle. c. A microscopic specimen has a wavelength of 8.2×10−14m8.2×10-14m and a speed of 1.1×105 m/s1.1×105 m/s. Determine the mass of this microscopic specimenarrow_forwardEx1/ A photon with momentum p = 1.02 MeV/c is scattered by a stationary free electron. Its momentum on scattering becomes p' = 0.255 MeV/c. At what angle is the photon scattered? Ex2/ A photon is scattered at an angle =120° by a stationary free electron. As a result the electron acquires a kinetic energy of the incident photon. T = 0.45 MeV. Find the energyarrow_forwardHow much energy does a photon of UV light (frequency = 3.6 x 1016 Hz) have? How fast do the light travel in a vacuum, water (n=1.33), and glass (n=1.50)?arrow_forward
- You want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forwardPLEASE ANSWER ALL OF THEM, TRUE OR FALSEarrow_forwardA typical Blu-Ray player uses a gallium nitride (GaN) diode laser with a wavelength of 405.0 nm. What is the energy (in J) of one Blu-Ray photon?arrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forwardWarm-blooded animals radiate much like a blackbody. Calculate the peak wavelength that each animal emits. What is the peak wavelength 1max emitted by a bird with a body temperature of 41.7 °C? Amax nm What is the peak wavelength emitted by a human with a body temperature of 36.3 °C? Amax nm What is the peak wavelength emitted by a sloth with a body temperature of 31.9 °C? Amax nm In which part of the electromagnetic spectrum do these animals radiate? radio X-ray infrared visible IIarrow_forwarde. X-rays having a wavelength of 0.100 nanometer are scattered off initially stationary electrons, at an angle of 40.0⁰. (i) Calculate the wavelength of the scattered electromagnetic radiation (ii) What is the percent change in the wavelength of the X-rays due to scattering at this angle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON