Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780133978216
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.10E
To determine
The width of the box for the ground-level energy of the proton to be
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please asap
How many particles are present in a closed container if the energy it contains is 91886.21 J, and the diatomic oxygen gas is moving at a velocity of 66.01 m/s? Use only the whole number for the value of atomic mass unit. Express your answer in proper scientific notation.
1. Consider an electron confined in a region of nuclear dimensions (about 5 fm). Find its minimum
possible kinetic energy in MeV. Treat this problem as one-dimensional, and use the relativistic relation
between E and p. Give your answer to 2 significant figures. (The large value you will find is a strong
argument against the presence of electrons inside nuclei, since no known mechanism could contain an
electron with this much energy.)
Chapter 40 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In solid helium the spacing between atoms is about 3Å . Helium contains 2 protons and 2 neutrons, so the mass of a helium atom is 6.6×10−27 kg. What is the smallest possible energy of a helium atom in solid helium? What temperature (in Kelvin) does this energy correspond with? (Boltzmann's constant is kb=1.38×10−23 J/Karrow_forwardA nucleus emits a gamma ray of energy 1.2 MeV from a state that has a lifetime of 2.1 ns. What is the uncertainty in the energy of the gamma ray? The best gamma-ray detectors can measure gamma-ray energies to a precision of no better than a few eV. Will this uncertainty be directly measurable?arrow_forwardConsider a proton confined within typical nuclear dimensions of 5×10^(−15) m. Estimate the minimum kinetic energy of the proton. Repeat this calculation for an electron confined within typical nuclear dimensions. Comment briefly on the physical significance of your results, given that the nuclear binding energy for a proton is typically in the range 1−10 MeVarrow_forward
- You may want to define a function, to do more complex items. For instance, let us compute the function beta, which will give you the value of beta. To do so, we need the following code: def beta(x): return x / 299792 print (beta(299792)) print (beta(149896)) 1.0 0.5 Using the function defined above, create a new function computing the Lorentz factor, and plot the Lorentz factor as a function of the speed. You can use as many new entries as needed; remember to explain what you are doing by adding some markdown entries when relevant.arrow_forward(a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) What traction of the decay energy is this, noting that the decay mode is (so that all the mass is destroyed)?arrow_forwardAssume that a proton in a nucleus can be treated as if it were confined to a one-dimensional of width 10.0 fm. (a) What are the energies of the proton when it is in the states corresponding to n=1,n=2, and n=3? (b) What are the energies of the photons emitted when the proton makes the transitions from the first and second excited states to the ground state?arrow_forward
- A π0 meson is an unstable particle produced in high-energy particle collisions. Its rest energy is approximately 135 MeV, and it exists for a lifetime of only 8.70 × 10-17 s before decaying into two gamma rays. Using the uncertainty principle, estimate the fractional uncertainty Δm/m in its mass determination.arrow_forwardA proton is confined in a uranium nucleus of diameter 7.2 x 10-15 m. Use the energy-level calculation of a one-dimensional box that has length equal to the nuclear diameter to calculate the proton's minimum kinetic energy. What is the proton's minimum kinetic energy according to the uncertainty principle?arrow_forwardYou are performing work as an assistant to a cosmology professor. She asks you to estimate the temperature of the Universe at a time after the Big Bang when neutral atoms could form from the plasma and the Universe became transparent. She tells you that the energy required to excite an atom is on the order of 1 eV. She suggests you use the Boltzmann distribution function e-E/k BT to find the order of magnitude of the threshold temperature at which 1.00% of a population of photons has energy greater than 1.00 eV.arrow_forward
- /arrow_forward2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg. 1)Calculate vrms. (Express your answer to three significant figures.)arrow_forwardIn Millikan’s oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2033 V, and the plate separation to be 2.00 cm. The oil drop (of density 0.81 g/cm3 ) has a diameter of 4.0×10-6 m . Find the charge on the drop, in terms of electron units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning