Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780133978216
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.60P
(a)
To determine
The form of the function
(b)
To determine
The wave function
(c)
To determine
To show: That the energies of the allowed levels are obtained from the solutions of the equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
one-dimensional
A one-particle,
system has the
potential energy function V = V₁ for 0 ≤ x ≤ 1 and V =
∞ elsewhere (where Vo is a constant).
a) Use the variation function = sin() for 0 ≤ x ≤ 1
and = 0 elsewhere to estimate the ground-state
energy of this system.
b) Calculate the % relative error.
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
A charged particle is bound to a harmonic oscillator potential 1ky2
kx?.
The system is placed in an external electric field E that is constant in space and time.
Calculate the change in energy from the ground state to second order. Hint: Consider the electric field in the X direction.
Chapter 40 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- The spherical symmetric potential in which a particle is moving is V(r)=Br^5, where ßis a positive constant. what is the relationship between the expectation value of kinetic andpotential energy of particle in stationary state is,arrow_forwardA potential function is shown in the following with incident particles coming from -0 with a total energy E>V2. The constants k are defined as k₁ = 2mE h? h? k₂ = √√2m (E - V₁) h² k3 = √√2m (E - V₂) Assume a special case for which k₂a = 2nπ, n = 1, 2, 3,.... Derive the expression, in terms of the constants, k₁, k2, and k3, for the transmission coefficient. The transmis- sion coefficient is defined as the ratio of the flux of particles in region III to the inci- dent flux in region I. Incident particles E>V₂ I V₁ II V2 III x = 0 x = aarrow_forwardAn electron possessing the kinetic energy E approaches a potential barrier of the height U = 2E and tunnels through it. What is the kinetic energy energy of the electron afterwards?arrow_forward
- c): A particle of mass m moves in a three-dimensional box of sides a, b, c. If the potential is zero inside and infinity outside the box, find the energy eigenvalues and eigenfunctions.arrow_forwardExample 6. A particle of mass 'm’ is moving in a one-dimensional box defined by the potential V = 0, 0sxsa and V = o othcrwise. Estimate the ground state energy using the trial function y (x) = Ax(a-x), OSxarrow_forwardA particle moves in one dimension x under the influence of a potential V(x) as sketched in the figure below. The shaded region corresponds to infinite V, i.e., the particle is not allowed to penetrate there. V(x) a b a²Vo = If there is an energy eigenvalue E = 0, then a and V, are related by a²Vo = (n + ² ) ² n² 2m 3-1 n²π² 2m a²V₁ = (n + ²) π ² 2m -Vo nπ² 0 a Xarrow_forwardA particle with mass m is in a field and has the state (in spherical coordinates) : Where N > 0 and a > 0 are fixed numbers. Determine the average kinetic energy of the particles.arrow_forwardQ1: If you know that the degree of accuracy in measuring momentum and positioning of an electron (it was treated as a harmonic oscillator) is Ap = And x= and surely AxAp Eminimum = hw (2) (Ax)minimum (1) 2mw Prove that :arrow_forwardConsider a potential barrier represented as follows: U(x) = 0 if x < 0; εx if 0 < x < a; 0 if x > a Determine the transmission coefficient as a function of particle energy.arrow_forwardA particle experiences a potential energy given by U(x) = (x² - 3)e-x² (in SI units). (a) Make a sketch of U(x), including numerical values at the minima and maxima. (b) What is the maximum energy the particle could have and yet be bound? (c) What is the maximum energy the particle could have and yet be bound for a considerable length of time? (d) Is it possible for a particle to have an energy greater than that in part (c) and still be "bound" for some period of time? Explain. Responsesarrow_forwardA hole is the absence of an electron at a potential location for its existence. Given that a hole is the result of the absence of an electron, its mass should be zero. However, we regard the effective mass of a hole to be negative. Why?arrow_forward4. A simple model of a radioactive nuclear decay assumes that alpha particles are trapped inside a nuclear potential well. An alpha particle is a particle made out of two protons and two neutrons and has a mass of 3.73 GeV/c². The nuclear potential can be modeled as a pair of barriers each with a width of 2.0 fm and a height of 30.0 MeV. Find the probability for an alpha particle to tunnel across one of the potential barriers if it has a kinetic energy of 20.0 MeV.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning