Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780133978216
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.2E
(a)
To determine
The two smallest positive values of
(b)
To determine
The two smallest positive values of
(c)
To determine
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
V (x) = 00,
V(x) = 0,
x<0,x 2 a
0
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
Harmonic oscillator eigenstates have the general form
1 μω ,1/4
μω
AG)(√(-)
n
ħ
In this formula, which part determines the number of nodes in the harmonic oscillator state?
=
y (x)
1
√(™
ћn
2"n!
Holev
1/4
μω
1
2"n!
exp(-1022²)
2ħ
μω
ħ
2"n!
exp
μω χ
2ħ
2
Chapter 40 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- Show that the wave function in (a) Equation 7.68 satisfies Equation 7.61, and (b) Equation 7.69 satisfies Equation 7.63.arrow_forwardAs a 1-dimensional problem, you have Schrodinger's equation, given by: -h? a2 a ih h 4(x, t) = at 2m Əx² ¥(x,t) + V(x) Þ(x,t) Suppose for a specific V(x) and certain boundary conditions, the function w, (x, t) is a solution to the above equation and 42 (x, t) is also a solution. Show that (x, t) equation, where a, b are complex numbers. a 41 (x, t) + b w2(x, t) also solves the abovearrow_forwardA free particle moving in one dimension has wave function Ψ(x, t)= A[ei(kx-vt)- ei(2kx-vt)]where k and v are positive real constants.Calculate vav as the distance the maxima have moved divided by the elapsed time.arrow_forward
- A particle of mass m moves in a one-dimensional box of length l with the potential V = 00, Il. At a certain instant, say t 0, the wave function of this particle is %3D known to have the form V = V30/15 x (1 – x), 0 0) as a series, and expressions for the coefficients in the series.arrow_forwardConsider the wave function y(0,0) = 3 sin cos 0e -2(1-cos²0)² (a) Write y(0,0) in terms of the spherical harmonics. (b) Write the expression found in part (a) in terms of the Cartesian coordinates. (c) Is (0,0) an eigenstate of 2 or î? (d) Find the probability of measuring 2ħ for the z-component of the orbital angular momentum.arrow_forwardA particle with mass m is moving in three-dimensions under the potential energy U(r), where r is the radial distance from the origin. The state of the particle is given by the time-independent wavefunction, Y(r) = Ce-kr. Because it is in three dimensions, it is the solution of the following time-independent Schrodinger equation dıp r2 + U(r)µ(r). dr h2 d EÞ(r) = 2mr2 dr In addition, 00 1 = | 4ar?y? (r)dr, (A(r)) = | 4r²p²(r)A(r)dr. a. Using the fact that the particle has to be somewhere in space, determine C. Express your answer in terms of k. b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent wave equation, what is the energy E of the particle and the potential energy U(r). (As usual, E and U(r) will be determined up to a constant.) Express your answer in terms of m, k, and ħ.arrow_forward
- A particle is described by the wave function [V5 cos 0 + sin(e + 4) + sin(0 – ø)], 2/3n (a) Express 4(0, 4) in terms of spherical harmonics (b) Calculate p and Lzµ. Is y an eigenstate of I? and L,? (c) Calculate Î44 and (L4) If the measurement of Î, is carried out, find the probability of getting the results 0,ħ and -ħ. (d)arrow_forwardU = U, %3D U = 0 X = 0 A potential step U(x) is defined by U(x) = 0 for x 0 If an electron beam of energy E > U, is approaching from the left, write the form of the wave function in region I (x 0) in terms of the electron mass m, energy E, and potential energy U,. Do not bother to determine the constant coefficients. Formulas.pdf (Click here-->) Edit Vicw Insert Format Tools Table 12pt v Paragraph BIU Av eu T? varrow_forwardQ 2: A particle moves inside a one-dimensional box of length L in the direction of sahur X its wave function . Y(x)~exp(—px) Find the calibration constant in terms of the dimension of the box first and then find the calibration constant when L — ooarrow_forward
- Problem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v EV, 2m dx² with boundary conditions (0) = 0 and V(1) = 0. Second, the Quantum Harmonic Oscillator (QHO) = h² d² +kr²V = EV 2m dg²+ka² 1/ k2²) v (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forwardThe particle is confined to a one-dimensional box between x=0 and x=2. Its wave function is A(x)=6x2/N (0≤x≤1) and A(x)=6/N (1<x≤2), where N is a normalization constant. Calculate the constant N and the average position of the particles.arrow_forwardA particle moving in one dimension has the wave function Y(x,t) = Aeli(ax-bt)] %3D where a and b are constants. What is the potential field V(x) in which the particle is moving?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax