Concept explainers
A person stands on a scale, which then reads 600 N. (a) What force is exerted on the scale by the person? (b) What force is exerted on the person by the scale? (c) What would happen to the reading as the person began to jump straight up?
(a)
The magnitude of the force applied on the scale by the person if he stands on a scaleand the readingis
Answer to Problem 9SP
Solution:
Explanation of Solution
Given data:
The weight of the person is
The scale is at rest, so there will be no acceleration.
Formula used:
Write the expression for the first condition of force equilibrium:
Here,
Explanation:
Draw the free body diagram of the scale when the person stands on it:
In the diagram,
Recall the expression for the first condition of force equilibrium:
Consider that the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Substitute
From Newton’s third law, the force exerted on the scale by a person is equal and opposite to the weight of the person and it acts in the downward direction because the force applied by the person is in the downward direction. So, the magnitude of force applied by the person to the scale should be equal to the normal reaction force applied by the contact surface of the scale to the person.
Conclusion:
The magnitude of the force applied on the scale by the person is
(b)
The magnitude of the force applied on the person by the scale if he stands on a scale and the scale reads
Answer to Problem 9SP
Solution:
Explanation of Solution
Given data:
The weight of the person is
The scale is at rest, so there will be no acceleration.
Formula used:
Write the expression for the first condition of force equilibrium:
Here,
Explanation:
Draw the free body diagram of the scale:
In the above diagram,
Recall the expression for the first condition of force equilibrium:
Consider that the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Substitute
From Newton’sthird law, the force exerted on the person by the scale is equal and opposite to the weight of the person and it actsin the upward direction because the force exerted by the scale is in the upward direction.
Conclusion:
Therefore, the magnitude of the force applied on the person by the scale is
(c)
The reading on a scale when the person begins to jump straight up on a scale.
Answer to Problem 9SP
Solution:
Increase
Explanation of Solution
Given data:
The weight of the person is
The scale is at rest, so there will be no acceleration.
Formula used:
Write the expression for Newton’s second law of motion:
Here,
Explanation:
Draw the free body diagram of the person when he begins to jump:
In the diagram given above,
Recall the expression for Newton’s second law of motion along the vertical direction:
Consider that the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Here,
Conclusion:
Therefore, as the person starts to jump straight up, the reading of the scale would increase.
Want to see more full solutions like this?
Chapter 4 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning