Concept explainers
(a) A 600-N load hangs motionlessly in Fig. 4-8. Assume the ropes to all be vertical and the pulleys to be weightless and frictionless. (a) What is the tension in the bottom hook attached, via a ring, to the load? (b) How many lengths of rope support the movable pulley? (c) What is the tension in the long rope? (d) How much force does the man apply? (e) How much force acts downward on the ceiling?
(a)
The magnitude of the tension in the bottom hook that is attached by a ring to the load in the Figure
Answer to Problem 17SP
Solution:
Explanation of Solution
Given data:
Refer to the figure 4-8.
Theload hanging motionlessly is
Formula used:
Write the expression for the first condition of the force’s equilibrium:
Here,
Explanation:
Consider all pulleys and hook as a system and draw its free body diagram:
In the above diagram,
Here, pulley
Since thesame long rope is passing over the pulley
Draw the free body diagram of the bottom hook, which is attached via a ring to the load.
In above the diagram,
Recall the expression for the first condition of the force’s equilibrium:
Consider the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Substitute
Conclusion:
The magnitude of the tension attached in a bottom hook is
(b)
The number of sections of the rope that supports the movable pulleyin the Figure
Answer to Problem 17SP
Solution:
Explanation of Solution
Given data:
Refer to the figure 4-8.
The load hanging at rest is
Formula used:
Write the expression for the first condition of the force’s equilibrium:
Here,
Explanation:
Refer the schematic diagram from the first part (a).
To observed the free body diagram, there are only three ropes that support the movable pulley.
Conclusion:
A segment of the rope that supports the movable pulley is
(c)
The magnitude of the tension in the long ropein the Figure
Answer to Problem 17SP
Solution:
Explanation of Solution
Given data:
Refer to the figure 4-8.
The load hanging at rest is
Formula used:
Write the expression for the first condition of the force’s equilibrium:
Here,
Explanation:
Draw the free body diagram of the pulley
In the above diagram,
Recall the expression for the first condition of the force’s equilibrium:
Consider the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Refer to the equation (1)
Substitute
Conclusion:
The magnitude of the tension in the long rope is
(d)
The maximum force applied by the man to pull the rope in the Figure
Answer to Problem 17SP
Solution:
Explanation of Solution
Given data:
Refer to the figure 4-8.
The load hanging motionlessly is
Formula used:
Write the expression for the first condition of the force’s equilibrium:
Here,
Explanation:
Draw the free body diagram when a man applied a pulling force on the rope:
To observed the above diagram,
Recall the expression for the first condition of the force’s equilibrium:
Consider the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Since the same rope is passing over the pulley, the tension
Substitute
Conclusion:
The magnitude of the force applied by the man is
(e)
The maximum force that is acting downward on the ceilingin the Figure 4.8.
Answer to Problem 17SP
Solution:
Explanation of Solution
Given data:
Refer to the figure 4-8.
The load hanging motionlessly is
Formula used:
Write the expression for the first condition of the force’s equilibrium:
Here,
Explanation:
Consider both the pulley 3 and pulley 3 as a system and draw theirfree body diagram:
In the above diagram,
Recall the expression for the first condition of the force’s equilibrium:
Consider the direction of the upward forces is positive and the direction of the downward forces is negative. Therefore,
Refer to the equation (1)
Substitute
Since
Conclusion:
The maximum force acting on the ceiling is
Want to see more full solutions like this?
Chapter 4 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
- PROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forward
- Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning