
Concept explainers
a.
Logic gate:
- Logic gate is an electronic circuit that is used to perform logic decisions based on the input.
- It contains one or more number of inputs and one output.
- The working of logic gate is based on the binary principle that has two states either logic 0 or logic 1.
- The output of logic gate is produced when it satisfies any of its logic conditions.
- The logic condition depends upon the type of the gates and the number of inputs.
- The primary logic gates include AND, OR, and NOT. And the combinations of these gates are used to implement any of the other logic gates.
AND gate:
The two-input AND gate is a logic gate, whose output will be high when all the inputs are high and whose output will be low when any one of the inputs is low.
OR gate:
The OR gate is a logic gate, whose output will be high when any of the inputs are high and whose output will be low when all the inputs are low.
NOT function:
The NOT gate is a logic gate; whose output will be high when the input is low and whose output will be low when the input is high. In other words, NOT gate always complement or invert its output.
NAND gate:
The NAND gate performs the reverse operation of AND gate. The two-input NAND gate is a logic gate, whose output will be high if any of the inputs are low and whose output will be low when all the inputs are high.
NOR gate:
The NOR gate performs the reverse operation of OR gate. The two-input NOR gate is a logic gate, whose output will be high if both the inputs are low and whose output will be low when any one of the inputs is high.
b.
Logic gate:
- Logic gate is an electronic circuit that is used to perform logic decisions based on the input.
- It contains one or more number of inputs and one output.
- The working of logic gate is based on the binary principle that has two states either logic 0 or logic 1.
- The output of logic gate is produced when it satisfies any of its logic conditions.
- The logic condition depends upon the type of the gates and the number of inputs.
- The primary logic gates include AND, OR, and NOT. And the combinations of these gates are used to implement any of the other logic gates.
AND gate:
The two-input AND gate is a logic gate, whose output will be high when all the inputs are high and whose output will be low when any one of the inputs is low.
OR gate:
The OR gate is a logic gate, whose output will be high when any of the inputs are high and whose output will be low when all the inputs are low.
NOT function:
The NOT gate is a logic gate; whose output will be high when the input is low and whose output will be low when the input is high. In other words, NOT gate always complement or invert its output.
NAND gate:
The NAND gate performs the reverse operation of AND gate.
NOR gate:
The NOR gate performs the reverse operation of OR gate.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK LOGIXPRO PLC LAB MANUAL FOR PROGRAM
- I need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardTask 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forwardCan you please solve this without AIarrow_forward
- 1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forwardCHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forwardHELP CHAT GPT GAVE ME WRONG ANSWER Consider the following implementation of a container that will be used in a concurrent environment. The container is supposed to be used like an indexed array, but provide thread-safe access to elements. struct concurrent_container { // Assume it’s called for any new instance soon before it’s ever used void concurrent_container() { init_mutex(&lock); } ~concurrent_container() { destroy_mutex(&lock); } // Returns element by its index. int get(int index) { lock.acquire(); if (index < 0 || index >= size) { return -1; } int result = data[index]; lock.release(); return result; } // Sets element by its index. void set(int index, int value) { lock.acquire(); if (index < 0 || index >= size) { resize(size); } data[index] = value; lock.release(); } // Extend maximum capacity of the…arrow_forward
- Write a C program using embedded assembler in which you use your own function to multiply by two without using the product. Tip: Just remember that multiplying by two in binary means shifting the number one place to the left. You can use the sample program from the previous exercise as a basis, which increments a variable. Just replace the INC instruction with SHL.arrow_forwardusing r languagearrow_forwardr languagearrow_forward
- r languagearrow_forwardR languagearrow_forwardQuestion 1 (15 Points) Inheritance: In this question, we are going to create a new subclass of the SimpleGeometricObject class, named Triangle. Create a SimpleGeometricObject.java and Copy the source code of the SimpleGeometricObject class from the following link: https://liveexample.pearsoncmg.com/html/SimpleGeometricObject.html TASK 1: Create a Triangle class that extends the SimpleGeometricObject class in Eclipse, following the below UML diagram. + base:double = 5 + height:double = 10 Triangle + Triangle() + Triangle(newBase: double, newHeight: double) + getArea(): double + setBase(): void + setHeight(): void + getBase(): double + getHeight(): doublearrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColePrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningA Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology Ptr




