
Fluid Mechanics (2nd Edition)
2nd Edition
ISBN: 9780134649290
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 94P
To determine
The amount of water that must be added to the tank.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Spur gears
Note : Exam is open notes &tables / Answer all questions.
Q.1. The press shown for Figure.1 has a rated load
of 22 kN. The twin screws have double start Acme
threads, a diameter of 50 mm, and a pitch of 6 mm.
Coefficients of friction are 0.05 for the threads and
0.08 for the collar bearings. Collar diameters are 90
mm. The gears have an efficiency of 95 percent and a
speed ratio of 60:1. A slip clutch, on the motor shaft,
prevents overloading. The full-load motor speed is
1720 rev/min.
(a) When the motor is turned on, how fast will the
press head move? (Vm= , Vser. =
)
(5M)
(b) What should be the horsepower rating of the
motor? (TR=, Tc= Pser. =
"
Bronze
bushings
Foot
Motor
Bearings
watt, Pm= watt, Pm= h.p.) (20M)
2['s
Fig.1
Worm
Collar
bearing
Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.
An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.
Chapter 4 Solutions
Fluid Mechanics (2nd Edition)
Ch. 4 - Prob. 1FPCh. 4 - Air flows through the triangular duct at 0.7 kg/s...Ch. 4 - Water has an average velocity of 8 m/s through the...Ch. 4 - Crude oil flows through the pipe at 0.02 m3/s. If...Ch. 4 - Determine the mass flow of air having a...Ch. 4 - Prob. 6FPCh. 4 - The velocity of the steady flow at A and B is...Ch. 4 - Prob. 8FPCh. 4 - As air exits the tank at 0.05 kg/s, it is mixed...Ch. 4 - Water flows along the triangular channel having...
Ch. 4 - Determine the mass flow of nitrogen in an...Ch. 4 - Nitrogen gas flows through the 8-in.-diameter...Ch. 4 - Air enters the turbine of a jet engine at a rate...Ch. 4 - Determine the mass flow of air in the duct if it...Ch. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - The velocity profile of a liquid flowing through...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Determine the mass flow of the fluid if it has the...Ch. 4 - The liquid in the rectangular channel has a...Ch. 4 - The liquid in the rectangular channel has a...Ch. 4 - Water flows along the semicircular trough with an...Ch. 4 - The 30-mm-diameter nozzle ejects water such that...Ch. 4 - Determine the volumetric flow through the...Ch. 4 - Determine the volumetric flow through the...Ch. 4 - The human heart has an average discharge of...Ch. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Kerosene flows through the nozzle at 0.25 m3/s....Ch. 4 -
Kerosene flows through the nozzle at 0.25 m3/s....Ch. 4 - At two specific instants during a heartbeat, the...Ch. 4 - Prob. 25PCh. 4 - The radius of the circular duct varies as m,...Ch. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - The average velocities of water flowing steadily...Ch. 4 - Air flows through the tapered duct, and during...Ch. 4 - Prob. 31PCh. 4 - Air is pumped into the tank, and at the instant...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Compressed air is being released from the tank,...Ch. 4 - Prob. 36PCh. 4 - Prob. 38PCh. 4 - Water flows through the pipe at A at 60 kg/s, and...Ch. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Nitrogen flows into the tank at A at VA = 3 m/s,...Ch. 4 - Nitrogen flows into the tank at A at VA = 3 m/s,...Ch. 4 - The flat strip is sprayed with paint using the six...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Drilling fluid is pumped down through the center...Ch. 4 - Drilling fluid is pumped down through the center...Ch. 4 - Oil flows into the pipe at A with an average...Ch. 4 - The unsteady flow of glycerin is such that at A it...Ch. 4 - The unsteady flow of glycerin is such that at A it...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - The cylindrical plunger traveling at Vp =...Ch. 4 - The cylindrical plunger traveling at Vp =...Ch. 4 - Prob. 56PCh. 4 - The pressure vessel of a nuclear reactor is filled...Ch. 4 - With every breath, air enters the trachea, its...Ch. 4 - A liquid flows through the drainpipe such that it...Ch. 4 - Oil flows into a mixing tank through pipe A with...Ch. 4 - Oil flows into the mixing tank through pipe A at...Ch. 4 - Water flows into the tank through two pipes. At A...Ch. 4 - Gasoline flows into the tank through two pipes. At...Ch. 4 - Prob. 64PCh. 4 - The cylindrical syringe is actuated by applying a...Ch. 4 - Prob. 66PCh. 4 - The tank contains air at a temperature of 20°C and...Ch. 4 - The natural gas (methane) and crude oil mixture...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Kerosene flows into the 4-ft-diameter cylindrical...Ch. 4 - Prob. 76PCh. 4 - Water flows into the cylindrical tank through...Ch. 4 - Water flows into the cylindrical tank through...Ch. 4 - The cylinder is pushed down into the tube at a...Ch. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Oil flows into the trapezoidal container at a...Ch. 4 - Oil flows into the conical frustum at a constant...Ch. 4 - Water in the triangular trough is at a depth of y...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Hydrogen is pumped into the closed cylindrical...Ch. 4 - Hydrogen is pumped into the closed cylindrical...Ch. 4 - Prob. 94PCh. 4 - A part is manufactured by placing molten plastic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license