The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 8RQ
To determine
Is the sphere of Eudoxus is a scientific model.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The value we have just calculated is the combined masses of Jupiter and Callisto! Their mass is in units of the Sun's Mass (MS) - we can convert this to
units which are more familiar to us like kilograms by multiplying this answer by the scale factor (1.99x1030 kg/1 MS):
(MJupiter + MCallisto) = ( MS) (1.99x1030 kg/1 Solar Mass) =
_______x_10___ kg
(I have already written the x 10 so you are reminded to write the exponenet of 10 in the scientific notation expression of your answer). Since you know from looking at pictures of Jupiter with its Galilean Satellites (look in your book at a picture if you have not already), that Callisto is much smaller than Jupiter - in fact it is less than 0.001 of Jupiter's size or mass, so the number we have just calculated for (MJupiter + MCallisto) is almost the same as MJupiter .
How much more massive is Jupiter than the Earth? (The mass of Earth is about 5.98 x 1024 kg)
Explain the tidal hypothesis.
The planet Saturn has a mass of 5.68×10^26 kg and a radius of 58,200 km. Janus, a moon of Saturn, has a mass of 1.9×10^18 kg and it orbits Saturn a distance of 151,400 km from the center of Saturn.
- How many hours does it take for Janus to orbit Saturn?
Chapter 4 Solutions
The Solar System
Ch. 4 - Prob. 1RQCh. 4 - Why did early human cultures observe astronomical...Ch. 4 - Prob. 3RQCh. 4 - Name one example each of a famous politician,...Ch. 4 - Why did Plato propose that all heavenly motion was...Ch. 4 -
On what did Plato base his knowledge? Was it...Ch. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Prob. 8RQCh. 4 - In Ptolemys model, how do the epicycles of Mercury...Ch. 4 - Describe in detail the motions of the planets...
Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 -
When Tycho observed the new star of 1572, he...Ch. 4 - Assume the night is clear and the Moons phase is...Ch. 4 - Does Tychos model of the Universe explain the...Ch. 4 - Name an empirical law. Why is it considered...Ch. 4 -
How does Kepler’s first law of planetary motion...Ch. 4 - Prob. 19RQCh. 4 - Prob. 20RQCh. 4 - Prob. 21RQCh. 4 - Prob. 22RQCh. 4 - Prob. 23RQCh. 4 - Prob. 24RQCh. 4 - Prob. 25RQCh. 4 - Prob. 26RQCh. 4 - Prob. 27RQCh. 4 - Prob. 1PCh. 4 -
If you lived on Mars, which planets would exhibit...Ch. 4 - Prob. 3PCh. 4 - If a planet has an average distance from the Sun...Ch. 4 - If a space probe is sent into an orbit around the...Ch. 4 - Prob. 6PCh. 4 - An object takes 29.5 years to orbit the Sun. What...Ch. 4 -
One planet is three times farther from the Sun...Ch. 4 - Galileos telescope showed him that Venus has a...Ch. 4 - Which is the phase of Venus when it is closest?...Ch. 4 - Prob. 11PCh. 4 - Prob. 1SPCh. 4 - Prob. 2SPCh. 4 - Prob. 1LLCh. 4 - Prob. 2LLCh. 4 - What three astronomical objects are represented...Ch. 4 - Use the figure below to explain how the Ptolemaic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why might Tycho Brahe have hesitated to hire Kepler? Why do you suppose he appointed Kepler his scientific heir? What is limited about Keplers third law P2 = a3, where P is the time in units of years a planet takes to orbit the Sun and a is the planets average distance from the Sun in units of AU? (Hint: Look at the units.) What does this tell you about Kepler and his laws?arrow_forwardHow Do We Know? Why is it important that a theory make testable predictions?arrow_forwardWhy was the nebular hypothesis never fully accepted by astronomers of the day?arrow_forward
- Use Kuiper Belt Object Haumea's eccentricity; e = 0.189, semimajor axis, a = 43.3 AU, and Period, P = 285 yrs, values to a) calculate its perihelion and aphelion distances with Dp = a (1 e) and D₂ = a (1 + e), b) verify if Haumea's a and P satisfy Kepler's third law for all objects orbiting the Sun: p2 = a³. Show your work. Paragraph Lato (Recom... a) Dp= Da= V b) p2= BI 19px... v U A L EQ 58° ...arrow_forwardSaturn's mass is M= 5.69 x 1026 kg and its radius R=60,300 km. If a moon orbits Saturn at a distance equal to 5 times its planetary radius, what is its period of orbit? (Hint, use Newton's version of Kepler's 3rd law, and you can neglect the mass of the moon) Express your answer in days to three significant figures.arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) The mass of Planet W is 1/100 that of Earth and its radius is 1/4 that of Earth. If the weight of an object is 600 N on Earth, what would it weigh on Planet W? 24 N 48 N 96 N 192 N 600 N A) The weight of an object at the surface of Earth is 90 N. What is its weight at a distance 2R from the surface of Earth? 10 N 30 N 90 N 270 N 810 N B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forward
- There is one part to this question. I need to know the m/s. Thank you!arrow_forwardMulchatna is an exoplanet orbiting star 12 Altair. If the planet’s orbital period is 4.25 days and 12 Altair constant is 3.2X10^-19 s^2/m^3, what is Mulchatna orbital radius?arrow_forwardFirst we will do a simulation of Eratosthenes measurement of the size of our planet over 2000 years ago, but we will do it on a hypothetical planet. At one location on that planet at noon, the light from its star comes in directly overhead. At another town 200 miles due South, the shadows cast by the towers in that town indicate that the sunlight is coming in at an angle of approximately 10 degrees from directly overhead. Using this information (and the fact that there are 360 degrees in a circle and that the diameter of a circle is equal to the circumstances divided by pi), please show your work to explain what the circumstances and diameter of this new planet isarrow_forward
- Saturn’s moon Mimas has an orbital period of T= 82,800 s at a distance of d= 1.87 × 108 m from Saturn. Using Kepler's 3rd law listed below for mass to determine Saturn’s mass. (Show calculations)arrow_forwardHow Do We Know? How can a scientific model be useful if it is not a true description of nature?arrow_forwardHow Do We Know? Why must a scientific argument dealing with some aspect of nature take all of the known evidence into account?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY