The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 8P
One planet is three times farther from the Sun than another. Will the farther planet take more, less, or the same amount of time to orbit the Sun? Will the closer planet orbit slower, faster, or the same speed? How much longer will the farther planet take to orbit than the closer planet? If the closer planet is located at 10 AU, how far is the farther planet, and what are the two planet's names?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A new mystery planet is detected around our Sun. We measure its position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semimajor axis of this planet's orbit (in AU)?
With that information, what is the orbital period of that planet (in years)?
If this planet has the same mass as Earth, how does the average force of gravity on the planet by the Sun compare with the average force of gravity on the Earth by the Sun? Please give a numerical ratio of the forces. (Hint: You can take the semimajor axis to represent the average position of the planets)
6:this is all one question with multiples steps. Thank you
A newly discovered planet orbits a distant star with the same mass as the Sun at an average distance of 122 million kilometers. Its orbital eccentricity is 0.6.
What is the planet's orbital period? And how do you find the planet's nearest and farthest orbital distances from its star?
If the semi-major axis, a, is measured in AU and the orbital period, p, is measured in years, then Kepler's 3rd law allows us to calculate the mass of the object they are orbiting using the following equation: M = a3/p2
Furthermore, the mass that is calculated by this equation is given in solar masses (MSun) where, by definition, the Sun's mass is 1 MSun.
Now, suppose I were to tell you that the mass of Jupiter is equal to 4.5e7 MSun.
Does the stated mass of Jupiter make sense?
Group of answer choices
- Yes
- No, it's too big.
- No, it's too small
Chapter 4 Solutions
The Solar System
Ch. 4 - Prob. 1RQCh. 4 - Why did early human cultures observe astronomical...Ch. 4 - Prob. 3RQCh. 4 - Name one example each of a famous politician,...Ch. 4 - Why did Plato propose that all heavenly motion was...Ch. 4 -
On what did Plato base his knowledge? Was it...Ch. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Prob. 8RQCh. 4 - In Ptolemys model, how do the epicycles of Mercury...Ch. 4 - Describe in detail the motions of the planets...
Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 -
When Tycho observed the new star of 1572, he...Ch. 4 - Assume the night is clear and the Moons phase is...Ch. 4 - Does Tychos model of the Universe explain the...Ch. 4 - Name an empirical law. Why is it considered...Ch. 4 -
How does Kepler’s first law of planetary motion...Ch. 4 - Prob. 19RQCh. 4 - Prob. 20RQCh. 4 - Prob. 21RQCh. 4 - Prob. 22RQCh. 4 - Prob. 23RQCh. 4 - Prob. 24RQCh. 4 - Prob. 25RQCh. 4 - Prob. 26RQCh. 4 - Prob. 27RQCh. 4 - Prob. 1PCh. 4 -
If you lived on Mars, which planets would exhibit...Ch. 4 - Prob. 3PCh. 4 - If a planet has an average distance from the Sun...Ch. 4 - If a space probe is sent into an orbit around the...Ch. 4 - Prob. 6PCh. 4 - An object takes 29.5 years to orbit the Sun. What...Ch. 4 -
One planet is three times farther from the Sun...Ch. 4 - Galileos telescope showed him that Venus has a...Ch. 4 - Which is the phase of Venus when it is closest?...Ch. 4 - Prob. 11PCh. 4 - Prob. 1SPCh. 4 - Prob. 2SPCh. 4 - Prob. 1LLCh. 4 - Prob. 2LLCh. 4 - What three astronomical objects are represented...Ch. 4 - Use the figure below to explain how the Ptolemaic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the semi-major axis, a, is measured in AU and the orbital period, p, is measured in years, then Kepler's 3rd law allows us to calculate the mass of the object they are orbiting using the following equation: M = a3/p2 Furthermore, the mass that is calculated by this equation is given in solar masses (MSun) where, by definition, the Sun's mass is 1 MSun. Now, suppose I were to tell you that the mass of Jupiter is equal to 4.5e7 MSun. Does the stated mass of Jupiter make sense? it is to big or to small or makes sensearrow_forwardA new mystery planet is detected around our Sun. We measure it’s position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semi-major axis of this planet’s orbit (in AU)? With that information, what is the orbital period of that planet(in years)?arrow_forwardplease use 180 Ibs Answers: a) Your Weight (Planet 1) Lbf Specific Weight of Water Lbf/Ft^3 b) Your Weight (Planet 2) Lbf Specific Weight of Water Lbf/Ft^3 c) Your Welght (Planet 3) Lbf Specific Weight of Water Lbf/Ft^3 What is your own body weight (Lbf) on the following (3) planets and what is the specific weight of water on the (3) planets? PLANET 1: An object falls from rest for a time of 2.50 sec with a striking velocity of 84.1 ft/sec. PLANET 2: An object falls from rest for a time of 5.63 sec with a striking velocity of 25.8 ft/sec. PLANET 3: An object falls from rest for a time of 1.46 sec with a striking velocity of 135.3 ft/sec.arrow_forward
- A planet orbits the Sun every 539.4 years. What is its distance (semi-major axis of the orbit) from the Sun? (Give your answer in SI units and include the unit.)arrow_forwardThe table below presents the semi-major axis (a) and Actual orbital period for all of the major planets in the solar system. Cube for each planet the semi-major axis in Astronomical Units. Then take the square root of this number to get the Calculated orbital period of each planet. Fill in the final row of data for each planet. Table of Data for Kepler’s Third Law: Table of Data for Kepler’s Third Law: Planet aau = Semi-Major Axis (AU) Actual Planet Calculated Planet Period (Yr) Period (Yr) __________ ______________________ ___________ ________________ Mercury 0.39 0.24 Venus 0.72 0.62 Earth 1.00 1.00 Mars 1.52 1.88 Jupiter…arrow_forwardMars is 1.5 times as far away from the Sun as Earth. Earth’s axis is tilted at 23.5o compared to the ecliptic. The axis of Mars is tilted at 25o compared to the ecliptic. The atmosphere on Earth is 100 times as thick as the atmosphere on Mars. Which of the following statements is true? 1.)Mars is so cold that the water there is ice, while Earth does not have any ice 2.)When it is summer in Earth’s northern hemisphere, it is winter on Mars’ southern hemisphere 3.) Earth has seasons, Mars does not 4.) All of the water on Mars is frozen, while Earth has water in solid, liquid and gas formarrow_forward
- Draw a picture that explains why Venus goes through phases the way the Moon does, according to the heliocentric cosmology. Does Jupiter also go through phases as seen from Earth? Why?arrow_forwardThe Moon requires about 1 month (0.08 year) to orbit Earth. Its distance from us is about 400,000 km (0.0027 AU). Use Kepler’s third law, as modified by Newton, to calculate the mass of Earth relative to the Sun.arrow_forwardThe light a planet receives from the Sun (per square meter of planet surface) decreases with the square of the distance from the Sun. So a planet that is twice as far from the Sun as Earth receives (1/2)2=0.25 times (25%) as much light and a planet that is three times as far from the Sun receives (1/3)2=0.11 times (11%) as much light. How much light is received by the moons of Jupiter and Saturn (compared to Earth), worlds which orbit 5.2 and 9.5 times farther from the Sun than Earth?arrow_forward
- What is P for Earth? What is a for Earth? Do these values support or disprove Keplers third law?arrow_forwardThe radius of Mars is about 3400 km, and its moons Phobos and Deimos orbit 9600 km and 23,500 km from the center of the planet. Design a model in which Mars is 5 in. in radius. How far away from the center of the planet would the two moons orbit?arrow_forwardWhich planets axis of rotation is a peculiarity, and why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY