Electrical Transformers and Rotating Machines
4th Edition
ISBN: 9781337264419
Author: Stephen L. Herman
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 8RQ
A transformer has a primary voltage of 240 volts and a secondary voltage of 48 volts. What is the turns ratio of this transformer?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
This is a mechanics/statics problem involving finding internal reactions, V(x) and M(x). Please refer to image for details. I'm not sure about where to take cuts and how to formulate the equations as a function of x. For my support Reactions I got Ay = 1008.33 lb, By = 1416.67 lb and Cy = 175 lb. and for the first cut V(x) = 1008.33 -250(x) and M(x) = 1008.33x - 125x^2. I'm struggling with the equations for the 2nd and 3rd cut.
As shown in the figure below, a ring is used to suspend a load and is supported by Cable OA and Spring OB. Given that the tension in Cable OA is 400 N, what is the weight of the load being supported? Assume the system is in static equilibrium.
4.
(a) State the conditions that must be met to ensure dynamic balance is achieved for long rotors.
(b) A rotor carries three out-of-balance discs in planes A, B and C as shown in Figure 4. The out-of-
balance mass x radius products of the rotor discs are tabulated in Table 4.
The shaft is to be dynamically balanced by adding balancing masses in planes P and Q, spaced along
the shaft at a distance da = 800 mm.
Determine the magnitude mara and angular position of the balancing mass x radius product that
must be added to plane Q.
MBB
Ов
θε
mdc
Мага
End View on Plane P
P
MBB
MATA
dA
dB
dc
do
Figure 4
moc
Table 4
MATA = 0.6 kg mm
6A = 0°
d₁ = 200 mm
mers = 0.2 kg mm
6g = 45°
dB = 400 mm
mcrc = 0.4 kg mm
Bc=240°
dc = 600 mm
Ans. (b) = 110.5°, moro = 0.2 kg mm
Chapter 4 Solutions
Electrical Transformers and Rotating Machines
Ch. 4 - What is a transformer?Ch. 4 - What are common efficiencies for transformers?
Ch. 4 - What is an isolation transformer?Ch. 4 - All values of a transformer are proportional to...Ch. 4 - A transformer has a primary voltage of 480 volts...Ch. 4 - If the secondary of the transformer in question 5...Ch. 4 - Explain the difference between a step-up and a...Ch. 4 - A transformer has a primary voltage of 240 volts...Ch. 4 - A transformer has an output of 750 VA. The primary...Ch. 4 - A transformer has a turns ratio of 1:6. The...
Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - The primary leads of a transformer are labeled 1...Ch. 4 - The local utility company must provide service to...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Refer to Figure 4-79 to answer the following...Ch. 4 - Prob. 7PCh. 4 - Prob. 8P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Need help in adding demensioning am am so confusedarrow_forwardComplete the following activity. Save as .pdf and upload to the assignment to the dropbox. 口 Use the general dimensioning symbols to correctly specify the following requirements on the drawing above.arrow_forwardplease solve and show workarrow_forward
- Water is boiling in a 25 cm diameter aluminum pan (k=237 W/mK) at 95 degrees C. Heat is transferred steadily to the boiling water in the pan through its .5 cm thick flat bottom at a rate of 800 W. if the inner surface temp of the bottom of the pan is 108 degrees C determine the boiling heat transfer coefficent on the inner surface of the pan and the outer surface temp of the bottom of the pan.arrow_forwardplease solve and show workarrow_forwardplease solve and show workarrow_forward
- A thin plastic membrane separates hydrogen from air. The molar concentrations of hydrogen in the membrane at the innner and outer surfaces are determined to be 0.045 and 0.002 kmol/m^3 respectiveley. The binary diffusion coefficent of hydrogen in plastic at the operation temp is 5.3*10^-10 m^2/s. Determine the mass flow rate of hydrogen by diffusion through the membrane under steady conditions if the thickeness of the membrane is 2mm and 0.5 mm.arrow_forwardCalculate the vertical cross section moment of inertia for Orientations 1 and 2. State which number is the higher moment of inertia using equation 1. Given: b1=1 in, h1=1.5 in, b2=1.5 in, h2=1 in, t=0.0625 in. Then calculate the maximum deflection for a point load of 8 lb on the free end of the beam using equation 2. Given: E=10.1*10^6 psi. 1. ((bh^3)/12) - (((b-2t)(h-2t)^3))/12) 2. S = (PL^3)/(3EI)arrow_forward1-69E The pressure in a natural gas pipeline is measured by the manometer shown in Fig. P1-69E with one of the arms open to the atmosphere where the local atmospheric pressure is 14.2 psia. Determine the absolute pressure in the pipeline. Natural Gas 10 in 6 in FIGURE P1-69E Mercury SG= 13.6 Air 2 in + 25 in Waterarrow_forward
- B 150 mm 120 mm PROBLEM 15.193 The L-shaped arm BCD rotates about the z axis with a constant angular velocity @₁ of 5 rad/s. Knowing that the 150-mm- radius disk rotates about BC with a constant angular velocity @2 of 4 rad/s, determine (a) the velocity of Point A, (b) the acceleration of Point A. Answers: V₁ =-(0.600 m/s)i + (0.750 m/s)j - (0.600 m/s)k a=-(6.15 m/s²)i- (3.00 m/s²)jarrow_forward3 Answer: 002 PROBLEM 15.188 The rotor of an electric motor rotates at the constant rate @₁ = 1800 rpm. Determine the angular acceleration of the rotor as the motor is rotated about the y axis with a constant angular velocity 2 x of 6 rpm counterclockwise when viewed from the positive y axis. α = (118.4 rad/s²)iarrow_forward12 in.. 10 in. PROBLEM 15.187 At the instant considered the radar antenna shown rotates about the origin of coordinates with an angular velocity @ = ai + @j+wk Knowing that (VA) = 15 in./s, (VB), 9 in./s, and (VB), = 18 in./s, determine (a) the angular velocity of the antenna, (b) the velocity of point A. B 10 in. Answers: = (0.600 rad/s)i - (2.00 rad/s) j + (0.750 rad/s)k V₁ = (20.0 in./s)i + (15.00 in./s) j + (24.0 in./s)karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license