
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 81P
(a)
To determine
The temperature of refrigerant-134a vapour based on the ideal gas equation.
(b)
To determine
The temperature of refrigerant-134a vapour based on the compressibility chart.
(c)
To determine
The temperature of refrigerant-134a vapour based on the data from tables.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This is an old exam practice question. The answer is Pmax = 218.8 kN normal stress governs but why?
Moist air initially at T₁ = 140°C, p₁ = 4 bar, and p₁ = 50% is contained in a 2.0-m³ closed, rigid tank. The tank contents are cooled to T₂
35°C.
Step 1
Determine the temperature at which condensation begins, in °C.
Air at T₁ = 24°C, p₁ = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3
kg/min and mixes with a saturated moist air stream entering at T2=7°C, p₂ = 1 bar. A single mixed stream exits at T3-17°C, p3=1 bar.
Neglect kinetic and potential energy effects
Chapter 4 Solutions
Fundamentals of Thermal-Fluid Sciences
Ch. 4 - Prob. 1PCh. 4 - What is the difference between saturated vapor and...Ch. 4 - Is there any difference between the intensive...Ch. 4 - Why are the temperature and pressure dependent...Ch. 4 - Is it true that water boils at higher temperature...Ch. 4 - What is the difference between the critical point...Ch. 4 - Prob. 7PCh. 4 - A househusband is cooking beef stew for his family...Ch. 4 - Prob. 9PCh. 4 - It is well known that warm air in a cooler...
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Does hfg change with pressure? How?
Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Which process requires more energy: completely...Ch. 4 - In the absence of compressed liquid tables, how is...Ch. 4 - In 1775, Dr. William Cullen made ice in Scotland...Ch. 4 - Complete this table for H2O:
Ch. 4 - Prob. 21PCh. 4 - Complete this table for H2O:
Ch. 4 - Prob. 24PCh. 4 - Prob. 26PCh. 4 - Complete this table for refrigerant-134a:
Ch. 4 - A 1.8-m3 rigid tank contains steam at 220°C....Ch. 4 - Prob. 29PCh. 4 - R-134a, whose specific volume is 0.6243 ft3/lbm,...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Refrigerant-134a at 200 kPa and 25°C flows through...Ch. 4 - The average atmospheric pressure in Denver...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - One pound-mass of water fills a 2.4264-ft3...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Water initially at 200 kPa and 300°C is contained...Ch. 4 - Saturated steam coming off the turbine of a steam...Ch. 4 - Water in a 5-cm-deep pan is observed to boil at...Ch. 4 - A cooking pan whose inner diameter is 20 cm is...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A piston–cylinder device contains 0.005 m3 of...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - A rigid vessel contains 8 kg of refrigerant-134a...Ch. 4 - Prob. 63PCh. 4 - A piston–cylinder device initially contains 50 L...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The air in an automobile tire with a volume of...Ch. 4 - The air in an automobile tire with a volume of...Ch. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - What is the principle of corresponding states?
Ch. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - What is the percentage of error involved in...Ch. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93RQCh. 4 - Prob. 94RQCh. 4 - A tank contains argon at 600°C and 200 kPa gage....Ch. 4 - Prob. 96RQCh. 4 - Prob. 97RQCh. 4 - Prob. 98RQCh. 4 - Prob. 99RQCh. 4 - Prob. 100RQCh. 4 - Prob. 101RQCh. 4 - Prob. 102RQCh. 4 - A 4-L rigid tank contains 2 kg of saturated...Ch. 4 - The gage pressure of an automobile tire is...Ch. 4 - Prob. 105RQCh. 4 - Prob. 106RQCh. 4 - Prob. 107RQCh. 4 - Prob. 108RQCh. 4 - Prob. 109RQCh. 4 - Prob. 110RQCh. 4 - Prob. 111RQCh. 4 - Prob. 112RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Hand calculation of cooling loadarrow_forwardAn HEV has a 24kW battery. How many miles can it go on electricity alone at 40 mph on a flat straight road with no headwind? Assume the rolling resistance factor is 0.018 and the Coefficient of Drag (aerodynamic) is 0.29 the frontal area is 2.25m^2 and the vehicle weighs 1618 kg.arrow_forwardAs shown in the figure below, moist air at T₁ = 36°C, 1 bar, and 35% relative humidity enters a heat exchanger operating at steady state with a volumetric flow rate of 10 m³/min and is cooled at constant pressure to 22°C. Ignoring kinetic and potential energy effects, determine: (a) the dew point temperature at the inlet, in °C. (b) the mass flow rate of moist air at the exit, in kg/min. (c) the relative humidity at the exit. (d) the rate of heat transfer from the moist air stream, in kW. (AV)1, T1 P₁ = 1 bar 11 = 35% 120 T₂=22°C P2 = 1 bararrow_forward
- The inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forwardThe inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forward###arrow_forward
- Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solution for transform function and provide matlab code (use k(i) for for loop NO COPIED SOLUTIONSarrow_forwardThis is an old practice exam. The answer is Ta-a = 4.615 MPa max = 14.20 MPa Su = 31.24 MPa Sus = 10.15 MPa but why?arrow_forwardThis is an old practice exam. The answer is dmin = 42.33 mm but how?arrow_forward
- 5.) 12.124* - Block B (WB = 12 lb) rests as shown on the upper surface of wedge A (W₁ = 30 lb). The angle of the slope is 0 = 30°. Neglect friction, and find immediately after the system is released from rest (a) the acceleration of a (a) and (b) the acceleration of B relative to A (a B/A).arrow_forwardWhat is the Maximum Bending Moment induced in the following Beam, if? P = 19 KN L = 11 m Ensure that your answer is in kN.m. لا اللهarrow_forwardWhat is the Magnitude of the Maximum Stress in the beam below if? W。 = 6 kN/m L = 9 m Beam width, b = 226 mm Beam Height, h = 273 mm Give your answer in MPa. A 233 B 4|3 Woarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License