Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 29P

(a)

To determine

The final pressure of the refrigerant R-134a.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The mass of the refrigernet (mR) is 0.85 kg.

The Intial temperature of the refrigernet (Ti)  is 10°C.

The mass of the refrigernet (mp) is 12 kg.

The diameter of the piston (D) is 25 cm.

The final temperature of the refrigernet is (Tf) 15°C.

The local atmospheric pressure (patm) is 88 kPa

Calculation:

The final pressure is equal to the initial pressure of the refrigerant R-134a.

  P2=P1=Patm+mpg(πD24)

  P2=88kPa+(12kg)(9.81m/s2)(π(25cm)24)=88kPa+(12kg)(9.81m/s2)(π(25cm)24)(1kN1000kgm/s2)=90.4kPa

Thus, the final pressure of the refrigerant R-134a is 90.4kPa_.

(b)

To determine

The final pressure of the refrigerant R-134a.

(b)

Expert Solution
Check Mark

Explanation of Solution

Convert the unit of initial pressure from kPa to MPa.

  P1=90.4kPa=90.4kPa(1MPa1000kPa)=0.0904MPa

Refer to Table A-13, obtain the values of below variables as in Table (I) at 10°C.

Pressure, MPa (x)Specific volume, m3/kg (y)
0.060.35048
0.0904?
0.100.20743

Write the formula of interpolation method of two variables at 10°C.

  y2=(x2x1)(y3y1)(x3x1)+y1        (II)

Here, the variables denote by x and y are pressure and specific volume.

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 0.35048 for y1, and 0.20743 for y3 in Equation (II).

  y2=(0.09040.06)(0.207430.35048)(0.100.06)+0.35048=0.2418

Thus, the specific volume of refrigerant R-134a at the initial state of 90.4 kPa and 10°C is 0.2418m3/kg.

Refer to Table A-13, obtain the values of below variables as in Table (II) at 10°C.

Pressure, MPa (x)Enthalpy, kJ/kg (y)
0.06248.60
0.0904?
0.10247.51

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 248.60 for y1, and 247.51 for y3 in Equation (II).

  y2=(0.09040.06)(247.51248.60)(0.100.06)+248.60=247.77

Thus, the enthalpy of refrigerant R-134a at the initial state of 90.4 kPa and 10°C is 247.77kJ/kg.

Apply spreadsheet and solve the final state specific volume at 15°C and 0.0904 MPa using interpolation method.

Refer to Table A-13, obtain the values of below variables as in Table (III) at 15°C and 0.06 MPa.

Temperature, °C (x)Specific volume, m3/kg (y)
100.37893
15?
200.39302

Substitute 10 for x1, 15 for x2, 20 for x3, 0.37893 for y1, and 0.39302 for y3 in Equation (II).

  y2=(1510)(0.393020.37893)(2010)+0.37893=0.386

Similarly, solve final state specific volume at 15°C and 0.10 MPa using interpolation method as 0.2294m3/kg.

Now use interpolation method again to solve the final state specific volume at 15°C. Refer to Table A-13, obtain the values of below variables as in Table (IV) at 15°C and 0.0904 MPa.

Pressure, MPa (x)Specific volume, m3/kg (y)
0.060.386
0.0904?
0.100.2294

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 0.386 for y1, and 0.2294 for y3 in Equation (II).

  y2=(0.09040.06)(0.22940.386)(0.100.06)+0.386=0.267

Thus, the final state specific volume at 15°C and 90.4 kPa is 0.267m3/kg.

Apply the above steps to calculate the enthalpy at 15°C and 90.4 kPa using interpolation method as 268.19kJ/kg.

Calculate the initial volume of cylinder.

  ν1=mv1

Here, the initial state specific volume is v1.

Substitute 0.85 kg for m and 0.2418m3/kg for v1 in Equation (III).

  ν1=0.85kg(0.2418m3/kg)=0.20553m3

Calculate the final volume of cylinder.

  ν2=mv2

Here, the final state specific volume is v2.

Substitute 0.85 kg for m and 0.267m3/kg for ν2 in Equation (IV).

  ν2=0.85kg(0.267m3/kg)=0.22695m3

Calculate the change in the volume of cylinder.

  Δν=ν2ν1

Substitute 0.22695m3 for ν2 and 0.20553m3 for ν1 in Equation (V).

  Δν=0.22695m30.20553m3=0.02142m3

Thus, the change in the volume of the cylinder is 0.02142m3_.

(c)

To determine

The change in the enthalpy of the refrigerant R-134a.

(c)

Expert Solution
Check Mark

Explanation of Solution

Calculate the total enthalpy change of refrigerant R-134a.

  ΔH=m(h2h1)        (VI)

Here, enthalpy at initial state and final state are h1andh2 respectively.

Substitute 0.85 kg for m, 247.77kJ/kg for h1 and 268.19kJ/kg for h2 in equation (VI).

  ΔH=0.85kg(268.19kJ/kg247.77kJ/kg)=17.35kJ/kg

Thus, the change in the enthalpy of the refrigerant R-134a is 17.35kJ/kg_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
FIGURE P1.37 1.38 WP As shown in Figure P1.38, an inclined manometer is used to measure the pressure of the gas within the reservoir, (a) Using data on the figure, determine the gas pressure, in lbf/in.² (b) Express the pressure as a gage or a vacuum pressure, as appropriate, in lbf/in.² (c) What advantage does an inclined manometer have over the U-tube manometer shown in Figure 1.7? Patm = 14.7 lbf/in.² L I C i Gas a Oil (p = 54.2 lb/ft³) 140° 8=32.2 ft/s² 15 in.
what is an low pressure Heater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standards
what is an air preheater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standards

Chapter 4 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Does hfg change with pressure? How? Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Which process requires more energy: completely...Ch. 4 - In the absence of compressed liquid tables, how is...Ch. 4 - In 1775, Dr. William Cullen made ice in Scotland...Ch. 4 - Complete this table for H2O: Ch. 4 - Prob. 21PCh. 4 - Complete this table for H2O: Ch. 4 - Prob. 24PCh. 4 - Prob. 26PCh. 4 - Complete this table for refrigerant-134a: Ch. 4 - A 1.8-m3 rigid tank contains steam at 220°C....Ch. 4 - Prob. 29PCh. 4 - R-134a, whose specific volume is 0.6243 ft3/lbm,...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Refrigerant-134a at 200 kPa and 25°C flows through...Ch. 4 - The average atmospheric pressure in Denver...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - One pound-mass of water fills a 2.4264-ft3...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Water initially at 200 kPa and 300°C is contained...Ch. 4 - Saturated steam coming off the turbine of a steam...Ch. 4 - Water in a 5-cm-deep pan is observed to boil at...Ch. 4 - A cooking pan whose inner diameter is 20 cm is...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A piston–cylinder device contains 0.005 m3 of...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - A rigid vessel contains 8 kg of refrigerant-134a...Ch. 4 - Prob. 63PCh. 4 - A piston–cylinder device initially contains 50 L...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The air in an automobile tire with a volume of...Ch. 4 - The air in an automobile tire with a volume of...Ch. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - What is the principle of corresponding states? Ch. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - What is the percentage of error involved in...Ch. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93RQCh. 4 - Prob. 94RQCh. 4 - A tank contains argon at 600°C and 200 kPa gage....Ch. 4 - Prob. 96RQCh. 4 - Prob. 97RQCh. 4 - Prob. 98RQCh. 4 - Prob. 99RQCh. 4 - Prob. 100RQCh. 4 - Prob. 101RQCh. 4 - Prob. 102RQCh. 4 - A 4-L rigid tank contains 2 kg of saturated...Ch. 4 - The gage pressure of an automobile tire is...Ch. 4 - Prob. 105RQCh. 4 - Prob. 106RQCh. 4 - Prob. 107RQCh. 4 - Prob. 108RQCh. 4 - Prob. 109RQCh. 4 - Prob. 110RQCh. 4 - Prob. 111RQCh. 4 - Prob. 112RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY