Concept explainers
To predict the next year’s unemployment if this year’s inflation is 3%
Answer to Problem 7CS
The unemployment rate is 5.99% when the inflation rate is 3%
Explanation of Solution
Given:
The inflation rate and the unemployment rate, both in percent, for the years 1988-2014 is as shown below.
Year | Inflation | Unemployment |
1988 | 4.4 | 5.3 |
1989 | 4.6 | 5.6 |
1990 | 6.1 | 6.8 |
1991 | 3.1 | 7.5 |
1992 | 2.9 | 6.9 |
1993 | 2.7 | 6.1 |
1994 | 2.7 | 5.6 |
1995 | 2.5 | 5.4 |
1996 | 3.3 | 4.9 |
1997 | 1.7 | 4.5 |
1998 | 1.6 | 4.2 |
1999 | 2.7 | 4.0 |
2000 | 3.4 | 4.7 |
2001 | 1.6 | 5.8 |
2002 | 2.4 | 6.0 |
2003 | 1.9 | 5.5 |
2004 | 3.3 | 5.1 |
2005 | 3.4 | 4.6 |
2006 | 2.5 | 4.6 |
2007 | 4.1 | 5.8 |
2008 | 0.1 | 9.3 |
2009 | 2.7 | 9.6 |
2010 | 1.5 | 8.9 |
2011 | 3.0 | 8.1 |
2012 | 1.7 | 7.4 |
2013 | 1.5 | 6.2 |
2014 | 0.8 | 5.3 |
Concept used:
Given ordered pairs
First we find the sample means
Now to find standard deviations, we construct the table as shown below:
4.4 | 5.3 | 2.978820 | 0.582111 |
4.6 | 5.6 | 3.709190 | 0.214333 |
6.1 | 6.8 | 11.736968 | 0.543225 |
3.1 | 7.5 | 0.181412 | 2.065078 |
2.9 | 6.9 | 0.051042 | 0.700632 |
2.7 | 6.1 | 0.000672 | 0.001371 |
2.7 | 5.6 | 0.000672 | 0.214333 |
2.5 | 5.4 | 0.030301 | 0.439518 |
3.3 | 4.9 | 0.391783 | 1.352480 |
1.7 | 4.5 | 0.948820 | 2.442850 |
1.6 | 4.2 | 1.153634 | 3.470627 |
2.7 | 4.0 | 0.000672 | 4.255812 |
3.4 | 4.7 | 0.526968 | 1.857665 |
1.6 | 5.8 | 1.153634 | 0.069149 |
2.4 | 6.0 | 0.075116 | 0.003964 |
1.9 | 5.5 | 0.599190 | 0.316926 |
3.3 | 5.1 | 0.391783 | 0.927295 |
3.4 | 4.6 | 0.526968 | 2.140257 |
2.5 | 4.6 | 0.030301 | 2.140257 |
4.1 | 5.8 | 2.033264 | 0.069149 |
0.1 | 9.3 | 6.625856 | 10.478415 |
2.7 | 9.6 | 0.000672 | 12.510637 |
1.5 | 8.9 | 1.378449 | 8.048784 |
3.0 | 8.1 | 0.106227 | 4.149523 |
1.7 | 7.4 | 0.948820 | 1.787670 |
1.5 | 6.2 | 1.378449 | 0.018779 |
0.8 | 5.3 | 3.512153 | 0.582111 |
Therefore, standard deviations are,
Now to find correlation coefficient, we construct the table as shown below:
4.4 | 5.3 | 1.3833969 | ||
4.6 | 5.6 | 1.5437047 | ||
6.1 | 6.8 | 2.7460131 | 0.4796863 | 1.3172248 |
3.1 | 7.5 | 0.3413962 | 0.9352671 | 0.3192966 |
2.9 | 6.9 | 0.1810884 | 0.5447692 | 0.0986513 |
2.7 | 6.1 | 0.0207806 | 0.0241054 | 0.0005009 |
2.7 | 5.6 | 0.0207806 | ||
2.5 | 5.4 | 0.0602024 | ||
3.3 | 4.9 | 0.5017040 | ||
1.7 | 4.5 | 0.7942045 | ||
1.6 | 4.2 | 1.0438311 | ||
2.7 | 4.0 | 0.0207806 | ||
3.4 | 4.7 | 0.5818579 | ||
1.6 | 5.8 | 0.1473395 | ||
2.4 | 6.0 | 0.0090019 | ||
1.9 | 5.5 | 0.2273283 | ||
3.3 | 5.1 | 0.5017040 | ||
3.4 | 4.6 | 0.5818579 | ||
2.5 | 4.6 | 0.1328491 | ||
4.1 | 5.8 | 1.1429352 | ||
0.1 | 9.3 | 2.1067608 | ||
2.7 | 9.6 | 0.0207806 | 2.3020097 | 0.0478371 |
1.5 | 8.9 | 1.8464288 | ||
3.0 | 8.1 | 0.2612423 | 1.3257650 | 0.3463458 |
1.7 | 7.4 | 0.8701841 | ||
1.5 | 6.2 | 0.0891884 | ||
0.8 | 5.3 | 0.7459018 | ||
|
Therefore,
Hence least squares regression line is,
Now substituting
Want to see more full solutions like this?
Chapter 4 Solutions
ELEMENTARY STATISTICS-ALEKS ACCESS CODE
- 19. Let X be a non-negative random variable. Show that lim nE (IX >n)) = 0. E lim (x)-0. = >arrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward(c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forward
- 26. (a) Provide an example where X, X but E(X,) does not converge to E(X).arrow_forward(b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning