
Concept explainers
(a)
The magnitude of contact force between the two masses.
(a)

Answer to Problem 79P
The magnitude of contact force between the two masses is
Explanation of Solution
Write the expression for the Newton’s second law of motion.
Here,
If the plane is frictionless, then the only force on the two masses are the normal forces and the weight with the frictional forces equalling zero. Since there is no force directed up the incline, the normal force between the two blocks must be zero.
Conclusion:
Therefore, the magnitude of contact force between the two masses is
(b)
The magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal.
(b)

Answer to Problem 79P
The magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal is
Explanation of Solution
Write the expression for the Newton’s law for the mass
Here,
Write the expression for the Newton’s law for the mass
Here,
Use equation (III) to write the expression for
Here,
Use equation (III) in (II) to solve for
Write the expression for the Newton’s law for the mass
Here,
Write the expression for the Newton’s law for the mass
Here,
Use equation (VI) to write the expression for
Here,
Use equation (VII) in (V) to solve for
Write the expression for the Newton’s third law of motion.
If the normal force is non-zero, then the acceleration must be equal.
Use equation (VIII) and (IV) in (X) and it becomes,
The coefficient of kinetic friction between the masses and the plane are equal.
Use equation (XII) in (XI) to solve for the contact forces between the two masses.
The only way this can be true with
Conclusion:
Therefore, the magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal is
(c)
If
(c)

Answer to Problem 79P
The magnitude of contact force between the two blocks is
Explanation of Solution
Use equation (IX) and (XI) to solve for
Conclusion:
Substitute
Therefore, the magnitude of contact force between the two blocks is
Want to see more full solutions like this?
Chapter 4 Solutions
College Physics, Volume 1
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





