College Physics, Volume 1
2nd Edition
ISBN: 9781133710271
Author: Giordano
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 10P
(a)
To determine
Sketch the forces acting on the car.
(b)
To determine
The components of the forces along the coordinate axes.
(c)
To determine
The condition for static equilibrium along the two coordinate directions.
(d)
To determine
The amount of tension in the cable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two blocks are stacked as shown to the right and rest on a frictionless surface. There is friction between the two blocks (coefficient of friction μ). An external force is applied to the top block at an angle θ to the horizontal.
What is the maximum force F that can be applied for the two blocks to move together? Give your answer in terms of the variables from the problem statement in addition to g for gravitational acceleration.
Your professor's car has stalled in the middle of the
road. He is behind it pushing on the trunk with a force
of 20 N forward and downward at an angle 30° relative
to horizontal, but the car is not moving. Given that the
car has a mass of 980 kg and the coefficient of friction
between the car and the road is μ = 0.3, what is the
magnitude of the friction force on the car?
Select one:
OA. 2900 N
B.
17 N
C.
980 N
D.
290 N
O E. 25 N
For the next three items: A 200 kg plank is projecting a distance
L = 5.0 m from a wall which is held steadily by a string that is
connected to it at an angle = 30° from the horizontal. The plank is
actually fasted to the wall where an unknown force F is exerted on the
plank by the wall. If a 60 kg mass is placed on the plank at a distance
d = 1.0 m, find the tension force on the string.
Ө
d
O 1300 N
O 4200 N
O 1600 N
O2200 N
L-
Chapter 4 Solutions
College Physics, Volume 1
Ch. 4.1 - Prob. 4.1CCCh. 4.2 - Prob. 4.2CCCh. 4.2 - Prob. 4.3CCCh. 4.4 - Prob. 4.4CCCh. 4.5 - Prob. 4.5CCCh. 4.5 - Prob. 4.6CCCh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4Q
Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object with a mass of m placed on an oblique surface at an angle. We applied a horizontal force f = mg on the particle as shown. Assume that the friction force between the object and the surface is so large that the object remains in place? Find the vertical force FN and the friction force ff ? In terms of the static friction coefficient, what is the range of the angle at which the object remains stagnant?arrow_forwardTwo packing crates of masses m, = 10.0 kg and m, = 7.30 kg are connected by a light string that passes over a frictionless pulley as in the figure below. The 7.30-kg crate lies on a smooth incline of angle 43.0°. Find the following. m, (a) the acceleration of the 7.30-kg crate m/s2 (up the incline) (b) the tension in the string Narrow_forwardConsider Figure P2-10 on P. 37 of your textbook showing two forces applied to a truss. Assume the 400 N acts along the + x-axis. a) Find the magnitude of the resultant force acting at point B. b) What is the angle © between the resultant force and the + x-axis?arrow_forward
- You find it takes 190 N of horizontal force to move an unloaded pickup truck along a level road at a speed of 2.4 m/s . You then load up the pickup and pump up its tires so that its total weight increases by 42%while the coefficient of rolling friction decreases by 19%. Now what horizontal force will you need to move the pickup along the same road at the same speed? The speed is low enough that you can ignore air resistance..arrow_forwardA person pushes horizontally with a force of 221 N on a 55.0 kg crate to move it to the right across a level floor. The coefficient of kinetic friction is 0.350. What is the magnitude of (a) the frictional force and (b) the crate's acceleration? The directions of the four forces and the acceleration must be identified. Make a free-body diagram. Please use the blue vector to specify forces and the pink vector for acceleration. Please make sure to label each vectors. The labels should none, mg, fk, a, FN, or Fpushing.arrow_forwardChapter 04, Problem 003 GO Two horizontal forces, F, and F,, are acting on a box, but only F, is shown in the drawing. F, The box moves only along the x axis. There is no friction between the box and the surface. Suppose that F = +7.1N and the mass of the box is 3.3 kg. Find the magnitude and direction of F, when the acceleration of the box is (a) +4.7 m/s², (b) -4.7 m/s², and (c) 0 m /s2. can point either to the right or to the left. F, (a) E = (b) F (c) Farrow_forward
- A loudspeaker of mass 25.0 kg is suspended a distance of h = 1.00 m below the ceiling by two cables that make equal angles with the ceiling. Each cable has a length of l = 2.50 m . Q: What is the tension T in each of the cables? Use 9.80 m/s2 for the magnitude of the free-fall acceleration.arrow_forwardAs shown on the right, a box is at rest on an incline plane. The mass of the box is 9.59 kg. The plane is inclined by an angle 0 = 53.3°. The coefficient of static friction between the box and the plane is µ = 0.765, while the coefficient of kinetic friction is µ = 0.438 . The force P = 98.6 N is acting up the plane as shown. What is the magnitude of the static friction force acting on the block helping to keep the mass at rest on the plane? m 0arrow_forwardBlack Panther (mass 80.0 kg) is trying to save Spiderman (mass 70.0 kg) and Supergirl (mass 60.0 kg) who have been rendered powerless by an evil villain. The three are attached by two ropes as shown and are sliding off the top of a building. The coefficient of friction between Black Panther's feet and the ground is 0.550. Determine: a) The force of kinetic friction between Black Panther's feet and the ground. b) The acceleration of the system. c) The forces of tension, FT1 and FT2, in the two ropes. Black Panther Frictionless pulley Spiderman a Supergirlarrow_forward
- Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the horizontal component of the friction force f⃗ ? Express your answer in terms of some or all of the variables n, μs, and/or μk.arrow_forwardA man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0 degrees, and the man pulls upward with a force F- of magnitude 377 N whose direction makes an angle of 30.0 degrees with the ramp. Part A: Find the horizontal component of the force F-→. Your answer should be positive if the force is to the right, negative if the force is to the left. Express your answer in newtons. Part B: Find the vertical component of the force F. Your answer should be positive if the force is upward, negative if the force is downward. Express your answer in newtons. 30,00 20.0°arrow_forwardPerson A, is tired pulling Person B and his wagon . So, Person B lets Person A to sit on his wagon and takes Person’s A place in crossing a 25m-long bridge. Starting from rest, Person B pulls Person A and the sleigh with a 130-N force 30° above the horizontal against the ground's frictional force of 95N. 1. Draw an appropriate free body diagram to represent all the forces acting on Person A and the wagon. (Person A and the Wagon are considered as a single object/system.) What is the acceleration of Person A and the wagon if their combined mass is 400kg? How much work is done by Person B in crossing the bridge? What is the total work done by all the forces on Person A and the wagon over the distance of 25 m? What is the change in the kinetic energy of Person A and the Wagon after crossing the bridge?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY