College Physics, Volume 1
College Physics, Volume 1
2nd Edition
ISBN: 9781133710271
Author: Giordano
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 27P

(a)

To determine

The speed of the ball at time t=3.2s.

(a)

Expert Solution
Check Mark

Answer to Problem 27P

The speed of the ball at time t=3.2s is 37m/s_.

Explanation of Solution

Write the expression for horizontal component of speed.

    vx=v0cosθ        (I)

Here, vx is the horizontal component of speed, v0 is the initial speed, and θ is the angle relative to the ground.

Write the expression for vertical component of speed.

    vy=v0sinθgt        (II)

Here, vx is the horizontal component of speed, g is the acceleration due to gravity, and t is the time.

Write the expression for magnitude of speed.

    v=vx2+vy2        (III)

Here, v is the magnitude of speed.

Conclusion:

Substitute 45m/s for v0, and 35° for θ in equation (I), to find vx.

    vx=(45m/s)cos35°=36.9m/s

Substitute 45m/s for v0, 9.8m/s2 for g, 3.2s for t, and 35° for θ in equation (II), to find vy.

    vy=(45m/s)sin35°(9.8m/s2)(3.2s)=5.55m/s

Substitute 5.55m/s for vy, and 36.9m/s for vx in equation (III), to find v.

    v=(36.9m/s)2+(5.55m/s)2=37m/s

Therefore, the speed of the ball at time t=3.2s is 37m/s_.

(b)

To determine

The angle θ, velocity v makes with the x axis.

(b)

Expert Solution
Check Mark

Answer to Problem 27P

The angle θ, the velocity v makes with the x axis is 8.6°_.

Explanation of Solution

Write the expression for angle θ, the velocity v makes with the x axis.

    tanθ=vyvx

Rearrange the above equation.

  θ=tan1(vyvx)        (IV)

Conclusion:

Substitute 5.55m/s for vy, and 36.9m/s for vx in equation (IV), to find θ.

    θ=tan1(5.55m/s36.9m/s)=8.6°

Therefore, the angle θ, the velocity v makes with the x axis is 8.6°_.

(c)

To determine

The value of time t for which the speed is minimum.

(c)

Expert Solution
Check Mark

Answer to Problem 27P

The value of time t for which the speed is minimum is 2.6s_.

Explanation of Solution

Write the expression for vertical component of speed.

    vy=v0sinθgt

Here, vx is the horizontal component of speed, g is the acceleration due to gravity, and t is the time.

Rearrange the above equation, to find t.

    v0sinθvy=gtt=v0sinθvyg        (V)

Conclusion:

Substitute 45m/s for v0, 9.8m/s2 for g, 0m/s for vy, and 35° for θ in equation (V), to find t.

    t=(45m/s)sin35°(0m/s)(9.8m/s)=2.6s

Therefore, The value of time t for which the speed is minimum is 2.6s_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1: Find the volume of the object shown to the correct number of significant figures. ( 22.37 cm 9.10 cm 85.75 cm Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year, what is this speed in SI units? ( Q3: Suppose a well known professor Raitman discovers Raitman's Law which states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are displacement, velocity, acceleration, and time, respectively? (
Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…
Q6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain attempts to cross the river in his ferry at right angles to the bank but by the time it has reached the opposite bank the captain awakes and notices that it is 1.0 km downstream. If the captain wishes to take his boat directly across, what angle upstream must he point the boat assuming the boat speed remains the same? ( Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from above) at a constant speed of 8 m s-1. From an instant when the stopper is moving in a northerly direction, find its change in velocity after moving round (a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a revolution.

Chapter 4 Solutions

College Physics, Volume 1

Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
28.1 Rigid Bodies; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=u_LAfG5uIpY;License: Standard YouTube License, CC-BY