PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 75P

(a)

To determine

The acceleration of the objects and the tension in the string in terms of θ , m1 and m2 .

(a)

Expert Solution
Check Mark

Answer to Problem 75P

The expression for the tension in the string is m2g(m1+m1sinθ)m1+m2 and the acceleration of the block is g(m2m1sinθ)m1+m2 .

Explanation of Solution

Calculation:

The free body diagram for the blocks is shown in Figure 1

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 4, Problem 75P

Figure 1

Consider the tension in the string is T and the acceleration of the system is a . Then consider that the block of mass m1 is accelerating to the right and the block of mass m2 is accelerating downwards.

The expression for the tension T for block m1 is given by,

  T=m1gsinθ

The expression for the tension in terms of the acceleration for mass m1 is given by,

  T=m1am1gsinθ=m1a

The expression for the tension T for block m2 is given by,

  m2gT=m2am2(g+a)=T

The expression for the tension in terms of the acceleration for mass m2 is given by,

  T=m2(g+a)m2(g+a)=m2a

The expression for the acceleration is evaluated as,

  m2(ga)m1gsinθ=m1aa=g( m 2 m 1 sinθ)m1+m2

The expression for the tension in terms of acceleration is given by,

  T=m2(ga)=m2(g( g( m 2 m 1 sinθ ) m 1 + m 2 ))=m2g( m 1 + m 1 sinθ)m1+m2

Conclusion:

Therefore, the expression for the tension in the string is m2g(m1+m1sinθ)m1+m2 and the acceleration of the block is g(m2m1sinθ)m1+m2 .

(b)

To determine

The acceleration and the tension of the string.

(b)

Expert Solution
Check Mark

Answer to Problem 75P

The tension of the string is 36.75N and the acceleration of the string is 2.45m/s2 .

Explanation of Solution

Given:

The angle of inclination is θ=30° .

The mass of first block is m1=5.0kg .

The mass of the second block is m2=5.0kg .

Calculation:

The acceleration of the string is calculated as,

  a=g( m 2 m 1 sinθ)m1+m2=( 9.81m/ s 2 )( 5.00kg( 5.00kg )sin30°)5.00kg+5.00kg=2.45m/s2

The tension in the string is calculated as,

  T=m2g( m 1 + m 1 sinθ)m1+m2=( 5.00kg)( 9.81m/ s 2 )( 5.00kg+( 5.00kg )sin30°)5.00kg+5.00kg=36.75N

Conclusion:

Therefore, the tension of the string is 36.75N and the acceleration of the string is 2.45m/s2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
CH 57. A 190-g block is launched by compressing a spring of constant k = = 200 N/m by 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has frictional coefficient μ = 0.27. This frictional surface extends 85 cm, fol- lowed by a frictionless curved rise, as shown in Fig. 7.21. After it's launched, where does the block finally come to rest? Measure from the left end of the frictional zone. Frictionless μ = 0.27 Frictionless FIGURE 7.21 Problem 57
3. (a) Show that the CM of a uniform thin rod of length L and mass M is at its center (b) Determine the CM of the rod assuming its linear mass density 1 (its mass per unit length) varies linearly from λ = λ at the left end to double that 0 value, λ = 2λ, at the right end. y 0 ·x- dx dm=λdx x +
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all steps

Chapter 4 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY