
Concept explainers
(a)
The horizontal component of the force.
(a)

Explanation of Solution
Given:
An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length
Introduction:
Under equilibrium condition net force acting on a static or a dynamic body sums up to zero. No net force acts on a body under the equilibrium condition.
The arch with the helium filled balloons is in equilibrium. The horizontal component of the force acting on the balloons is of same magnitude.
Write the expression for
Here
Under equilibrium the net force is zero. The horizontal components of the forces are equal in magnitude.
Write the expression of force under equilibrium condition.
Substitute
Conclusion:
Thus, the horizontal component of the forces has equal magnitude.
(b)
The tension of the mass-less rope.
(b)

Explanation of Solution
Given:
An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length
Introduction:
The arch with the helium filled balloons is in equilibrium. The horizontal component of the force acting on the balloons is of same magnitude.
Write the expression for Newton’s second law
Here,
Under equilibrium condition all the vertical component of the force balances each other.
Here,
Write the expression for
Under equilibrium condition
Conclusion:
Thus, under equilibrium condition the relation between forces of tension is
(c)
The, trigonometric identity
(c)

Explanation of Solution
Given:
An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length
Introduction:
There are two supports at the two ends of the arch. Each supports equally shares the vertical component of the force.
Write the expression for vertical component of the force shared by the two supports.
Here,
Write the expression for the trigonometric identity
Substitute
Write the expression for symmetry of the angle
Here
Write the expression for
Conclusion:
Thus, under equilibrium condition the expression for
(d)
The, trigonometric identity
(d)

Explanation of Solution
Given:
An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length
Introduction:
Under equilibrium condition the components of force due to tension of the rope balances each other.
Write the expression for
Substitute
Write the expression for force.
Divide both sides of the above expression by
Rearrange the above equation.
Substitute
Substitute
Write the expression of length of rope between two consecutive balloons.
Here
Write the expression for the horizontal coordinate of the
Write the expression for the vertical coordinate of the
Conclusion:
Thus, the horizontal coordinate of the
Want to see more full solutions like this?
Chapter 4 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- For number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forwardShow work using graphing paperarrow_forward
- Can someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forwardIn the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forward
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





