COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 75P
A vintage sports car accelerates down a slope of θ = 17° as depicted in Figure P4.75. The driver notices that the strings of the fuzzy dice hanging from his rearview mirror are perpendicular to the roof of the car. What is the car’s acceleration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
here it explodes, relative to its firing point?
P40. A train slews down as it rounds a sharp horizontal turn, going from 90.0
km/hr to 50.0 km/hr in the 15.0 s it takes to "round the bend". The radius of
the curve is 150 m. Compute the acceleration at the moment the train speed
reaches 50.0 km/hr. Assume the train continues to slow down at this time at
the same rate.
You're playing a cartoony racing video game, with a character on a motorcycle. You drive your character off a ledge at 15 m/s. The next ledge for the character's bike to land on is 25 m away (horizontally) and 12 m below. Assume the video game has realistic physics coded into it, except that acceleration due to gravity is only 8.0 m/s^2.
a) will your character land on the next platform?
b) whether they land or not, find their velocity (magnitude and direction) as they either land on or pass through the 12 m below position.
The acceleration due to gravity on the surface of a planet depends on the mass and size of the planet; therefore, other planets will have accelerations due to gravity other than 9.8 m / s2. Imagine an astronaut standing on an alien planet, which has no atmosphere, and throws a stone with a velocity of 7.35 m / s in a horizontal direction, dropping it at a height of 1.40 m above the surface of the planet. The rock hits the surface at a horizontal distance of 9.50 m from the astronaut. Find the magnitude of the acceleration due to gravity, in m / s2, on this alien planet.
Chapter 4 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 4.1 - Prob. 4.1CCCh. 4.2 - Prob. 4.2CCCh. 4.2 - Prob. 4.3CCCh. 4.4 - Prob. 4.4CCCh. 4.5 - Prob. 4.5CCCh. 4.5 - Prob. 4.6CCCh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4Q
Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A golfer is trying to hit their ball over a 20 m tree. The ball leaves their club at an angle of 28° above the horizon. What is the minimum speed the golf ball would need to have after being hit by the club to make it over the tree?arrow_forwardOur balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid, causing dizziness. Suppose that a skater is spinning very fast at 3.0 revolutions per second about a vertical axis through the center of his head. Take the inner ear to be approximately 7.0 cm from the axis of spin. (The distance varies from person to person.) What is the radial acceleration (in m/s2 and in g’s) of the endolymph fluid? Show complete solution.arrow_forwardI chose (C) and got my answer incorrect. I need help figuring out how to solve this and what the correct answer is.arrow_forward
- Spring Gun: A spring gun can launch a projectile with a speed of 12.21 m/s. It is placed at the edge of a table and launches a projectile horizontally. The table is 1.8 m high, and the projectile travels a distance of 12.90 m before it hits the ground. The lab is on an asteroid.What is the acceleration due to gravity on this asteroid?arrow_forwardA hockey puck slides off the edge of a table with an initial velocity of 20.0 m/s. The height of the table above the ground is 20.0 m. What is the magnitude of the vertical component of the velocity of the puck in m/s just before it touches the ground? Use g = 9.80 m/s2. Neglect air resistance.arrow_forwardYou are playing miniature golf at the golf course shown. Due to the fake plastic grass, the ball decelerates at -1.07 m/s2 when rolling horizontally and at -6.11 m/s2 on the slope. What is the slowest speed with which the ball can leave your golf club if you wish to make a hole in one?arrow_forward
- Inline roller skater is skating on a curved path as shown. The curved path is described as y= f(x)3D 0.18x2. The velocity of the skater once he reaches point A is 4.9 m/s which is increasing at rate of 0.54 m/s2. Calculate the magnitude and direction of skater's acceleration at point A. Note that yA = 9.3 m. Answer:arrow_forwardAn Olympic diver is on a diving platform 4.5 m above the water. To start her dive, she runs off of the platform with a speed of 1.3 m/s in the horizontal direction. You will be asked to find the diver's speed just before she enters the water. What are the x- and y components of her velocity just before she enters the water? Note: these may require calculations.vfx = 1.3 m/s; vfy = -4.5 m/svfx = 1.3 m/s; vfy = -9.4 m/svfx = 0 m/s; vfy = 0 m/svfx = 4.5 m/s; vfy = -4.5 m/sarrow_forwardA baseball player friend of yours wants to determine his pitching speed. You have him stand on a ledge and throw the ball horizontally from an elevation 3.0 m above the ground. The ball lands 20 m away. What is his pitching speed?arrow_forward
- A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forwardA golfer hits his approach shot at an angle of 50.0, giving the ball an initial speed of 38.2 m/s (Fig. P4.60). The ball lands on the elevated green, 5.50 m above the initial position near the hole, and stops immediately. a. How much time passed while the ball was in the air? b. How far did the ball travel horizontally before landing? c. What was the peak height reached by the ball? FIGURE P4.60arrow_forwardA skier leaves the ramp of a ski jump with a velocity of v = 10.0 m/s at = 15.0 above the horizontal as shown in Figure P3.52. The slope where she will land is inclined downward at = 50.0, and air resistance is negligible. Find (a) the distance from the end of the ramp to where the jumper lands and (b) her velocity components just before the landing. (c) Explain how you think the results might be affected if air resistance were included.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY