COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 53P
To determine
The vertical height
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A long jumper leaves the ground at an angle of 60.0° above the horizontal and at a speed of 6.0 m/s. What is the maximum height reached?
Arlal
B
2
3
4
5
1. An archer fires an arrow horizontally from her shoulder, 1.5 meters from the ground. It
misses his target and buries itself in the ground 40 meters away. Frustrated that they are
out about $6 to replace it, the archer figures he might as well calculate the launch
velocity of the arrow to take his mind off it. How fast was the arrow going at the moment
of launch?
A daredevil launches off a ramp trying to jump 10 flaming school buses. They launch
with an initial horizontal velocity of 30 m/s. They also have a vertical velocity of 10
meters per second. Will they make the jump if ramp to ramp is 50 meters?
2.
It might help to Sketch the diagram of the jump.
MacBook Pro
000
DII
吕0
F6
F7
F8
F9
F3
F4
F5
23
%24
&
4
7
8.
III
CO
A stone is thrown at an angle of 30 ° above the horizontal from the top edge of a cliff with an initial speed of 12 m/s. A stop watch measures the stone's trajectory time from top of cliff to bottom to be 4.8 s. What is the height of the cliff? ( g = 9.8 m/s 2 and air resistance is negligible)
Chapter 4 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 4.1 - Prob. 4.1CCCh. 4.2 - Prob. 4.2CCCh. 4.2 - Prob. 4.3CCCh. 4.4 - Prob. 4.4CCCh. 4.5 - Prob. 4.5CCCh. 4.5 - Prob. 4.6CCCh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4Q
Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A stone is thown from the top edge of a cliff with an initial speed of V0 = 15 m/s . The stone takes 3 seconds to each the bottom. What is the height of the cliff. (air resistance is negligible).arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 18.0 m/s. The cliff is 50.0 m above a flat, horizontal beach. How long after being released does the stone strike the beach below the cliff? With what x and y speed will the stone impact the ground?arrow_forwardA pebble rolls off the roof of Science Hall and falls vertically. Just before it reaches the ground, the pebble's speed is 17 m/s. Neglect air resistance and determine the height of Science Hall.arrow_forward
- In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it starts to careen down the steeply sloped track. In one event, the sled reaches a top speed of 9.2 m/s before starting down the initial part of the track, which is sloped downward at an angle of 6.0°. What is the sled’s speed after it has traveled the first 100 m?arrow_forwardA punter kicks a football at an angle 33.9 degrees above the horizontal. The football leaves the punter's foot at a height of 1.10 m above the ground and with a speed of 29.6 m/s. Calculate the maximum height reached by the football above the ground. Ignore air resistance.arrow_forwardAn attacker at the base of a castle wall 3.75 m high throws a rock straight up with speed 7.50 m/s from a height of 1.60 m above the ground. (a) Will the rock reach the top of the wall? Yes No (b) If so, what is its speed at the top? If not, what initial speed must it have to reach the top? m/s Enter a number. (c) Find the change in speed of a rock thrown straight down from the top of the wall at an initial speed of 7.50 m/s and moving between the same two points. m/s (d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? Yes No (e) Explain physically why it does or does not agree.arrow_forward
- An olympic gymnast jumps up and down on a trampoline. If the gymnast's feet leave the trampoline at a height of 1.0 m above the ground and reach a maximum height of 6.0 m above the ground, at what speed was the gymnast launched from the trampoline?arrow_forwardAn attacker at the base of a castle wall 3.60 m high throws a rock straight up with speed 8.20 m/s at a height of 1.50 m above the ground. (a) If so, what is the rock's speed at the top? If not, what initial speed must the rock have to reach the top? m/s(b) Find the change in the speed of a rock thrown straight down from the top of the wall at an initial speed of 8.20 m/s and moving between the same two points. m/s(c) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upwards between the same elevations? Explain physically why or why not.arrow_forwardA daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a ramp of 61.8 degrees at a speed of 49 m/s. What would be the largest number of buses he can clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 10.0 m long? Use g = 9.8 m/s?. Your answer should be in the form of an integer number (e.g., 3 buses, not 3.4 buses).arrow_forward
- "A person stands on the ground 60m away from a cliff with a height h. They throw a ball toward the cliff with a speed of vp = 30 m/s and an angle of 60° above the horizontal. It lands on top edge of the cliff some time later. How high is the cliff, and what is the ball's impact speed?"arrow_forwardA car is traveling horizontally at 28.7 m/s at the moment it drives off the top of a cliff. The car strikes the ground 0.538 seconds after leaving the top of the cliff. Assuming air-resistance can be ignored, how tall is the cliff?arrow_forwardA stone is thrown with an initial speed of 15m/s at an angle of 53° above the horizontal from the top of a 35m building. If g=9.8m/s^2 and air resistance is negligable, then what is the speed of the rock as it hits the ground?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY