COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 3P
Several forces act on a particle as shown in Figure P4.3. If the particle is in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A two dimensional force system is given. The objective is to find the resultant force of the system by using vector operations. There are three forces present in the system.
A. Find the vector form for each of the three forces: F1=10, Theta 1=45: F2=40x Theta 2=135; F3=30, Theta 3=270
B.Find the vector form of the resultant force C.Find the magnitude of the resultant force
D. Find the angle of the force referred from the x-axis and describe its direction
An object is suspended from two cables that meet at a point above the object. One cable pulls with a force modeled by F1 = −77i + 35j. The other cable pulls with a force modeled by F2 = 92i + 84j. What is the angle between the cables? Round to the nearest degree.
a
119°
b
71°
c
105°
d
113°
In a two-dimensional tug-of-war, Alex, Betty, and Charles pull horizontally on an automobile tire at the angles shown in the overhead view of the figure. The tire remains
stationary in spite of the three pulls. Alex pulls with force of magnitude 213 N, and Charles pulls with force of magnitude 161 N. Note that the direction of Charles' force is
not given. What is the magnitude of Betty's force?
N
Alex
Charles
137°
Betty
Chapter 4 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 4.1 - Prob. 4.1CCCh. 4.2 - Prob. 4.2CCCh. 4.2 - Prob. 4.3CCCh. 4.4 - Prob. 4.4CCCh. 4.5 - Prob. 4.5CCCh. 4.5 - Prob. 4.6CCCh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4Q
Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A skate park is formed by two semicircles of radius R1 = 8.3 m and R2 = 1.0 m and a flat central part, as shown in the following figure. The flat part has a length L = 3.6 m. The semicircles are tangent to the horizontal in B and C and to the vertical in A and D. There is no friction in the curved parts and in the flat part the coefficient of kinetic friction is μC = 0.2. A block with mass m = 3.2 kg is dropped from A. Suppose the acceleration due to gravity is 9.8 m / s2. What is the magnitude of the velocity of the block as it passes through point B the second time? Choose one: a. 45,4 m/sb. None of the other alternatives.c. 22,7 m/sd. 11,6 m/se. 12,0 m/sf. 5,7 m/sg. 7,6 m/sh. 129,0 m/sarrow_forwardThe slope of the 7.9 kN force F is specified as shown in the figure. Express F as a vector in terms of the unit vectors i and j. Assume a = 11, b = 5. Answer: F = (i a b -x i+ MI j) kNarrow_forwardZarrow_forward
- Vector F1 = 625 N makes an angle of 270 degrees when rotated counterclockwise from the +x axis. Vector F2 = 875 N makes a 120 degree angle from Vector F1 when rotated counterclockwise. What is the direction of the vector needed to balance the two forces?arrow_forwardA motorist travels along a vertical circle with a diameter of 10.0 m. After one successful revolution, he notices that his speed at the bottom of the pathway is 6.50 m/s. The mass of the motorists is 70.0 kg. What is the radial acceleration of the motorist at the bottom of the pathway?arrow_forwardA skateboarder is attempting to skate through a vertical loop of radius r = 7.5 m. He skates down a ramp and is launched into the loop by an inclined plane that makes an angle of θ = 45 degrees with respect to the horizontal. a. If the skateboarder begins from rest how high does the ramp he starts from have to be so that he does not fall at the top of the loop? Give your answer in meters.arrow_forward
- The slope of the 5.0 KN force F is specified as shown in the figure. Express F as a vector in terms of the unit vectors i and j. Assume a = 13, b = 6. Answer: F = ( F b i+ j) KNarrow_forwardA graduate student discovers that the only centrifuge in the laboratory is malfunctioning. The angular speed was supposed to be adjustable, but now it is stuck on a high angular speed, and the student is running an experiment that requires a low translational speed. Fortunately, the arm is adjustable. What can the student do to the length of the arm to get the correct translational speed?arrow_forwardIn an assembly operation illustrated in Figure P3.30. a robot moves an object first straight upward and then also to the east, around an arc forming one-quarter of a circle of radius 4.80 cm that lies in an eastwest vertical plane. The robot then moves the object upward and to the north, through one-quarter of a circle of radius 3.70 cm that lies in a northsouth vertical plane. Find (a) the magnitude of the total displacement of the object and (b) the angle the total displacement makes with the vertical. Figure P3.30arrow_forward
- Vector F₁ = 625 N makes an angle of 2700 when rotated counterclockwise from the +x axis. Vector F2 = 875 N makes a 1200 angle from Vector F₁ when rotated counterclockwise. What is the magnitude a vector needed to balance the two forces? O 680.6 N O86.2 N -980.6 N O-670.6 N O980.6 N 78.2 N O 580.6 N 780.6 Narrow_forwardA person is holding a beam at rest as shown with theta= 36.3 degrees and phi= 62.7 degrees. The beam has a mass of 21.7 kg. What is the magnitude of the friction force from the ground on the beam? and What is the tension in the rope attached to the beam?arrow_forwardCable AB exerts a force of 70 N on the end of the 3-m-long boom OA. (b) Express the force vector F1 as a Cartesian Vector.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY