COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 62P
Consider the motion of a bicycle with air drag included. We saw how to deal with the motion on a hill in connection with Figure 4.33. Now assume the bicycle is coasting on level ground and is being pushed along by a tailwind of 4.5 m/s (about 10 mi/h). If the bicycle starts from rest at t = 0, what is the acceleration of the bicycle at that moment? Assume there are no frictional forces (e.g., from the bicycle’s tires or bearings, or any other source) opposing the motion of the bicycle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A box of mass 100.0kg slides up a ramp at 20m/s with a friction coefcient between the box andground of 0.40. A motion sensor is tracking the box as it slides. What will the plot of speed vs timelook like? Please include intercepts (x and y) with numbers labeled.
A Bullet with a mass of 5.2 grams is fired out of a rifle. The bullet’s initial velocity is 0 m/sec. Its muzzle velocity is 850 m/sec (in the direction the barrel is pointing). The barrel is 60 cm long. Assume that the acceleration inside the barrel is the same for the entire length of the barrel. What is the acceleration in m/sec2 and what is the time it takes for the bullet to travel down the barrel? (You must solve two simultaneous equations. vf = vi + at ; s= vit + 1/2at2)
Acceleration time
Problem 2:
A 165 lb skydiver jumps off from a plane at a height 10,000 ft. In
the first 30 seconds, the drag force due to air resistance is 2v. Use
g = 32 ft/s'. (A) What is the differential equation (as an explicit
derivative) that describes the motion of the skydiver? (B) what is
the velocity of the skydiver after the first 10 seconds? (C) What
is his altitude at that instant of time? After the first 30 seconds,
the parachute is released to increase the drag force. If this time,
the drag force is proportional to the square of the velocity, (D)
find an expression for the velocity at any time t after the initial
30 seconds, assuming the same value of k. It's alright if your
answer is in implicit form.
Chapter 4 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 4.1 - Prob. 4.1CCCh. 4.2 - Prob. 4.2CCCh. 4.2 - Prob. 4.3CCCh. 4.4 - Prob. 4.4CCCh. 4.5 - Prob. 4.5CCCh. 4.5 - Prob. 4.6CCCh. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4Q
Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Several forces act on a particle as shown in...Ch. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - The sled in Figure 4.2 is stuck in the snow. A...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A bullet is fired from a rifle with speed v0 at an...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - An airplane flies from Boston to San Francisco (a...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Two crates of mass m1 = 35 kg and m2 = 15 kg are...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Consider the motion of a bicycle with air drag...Ch. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - A vintage sports car accelerates down a slope of ...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Two blocks of mass m1 = 2.5 kg and m2 = 3.5 kg...Ch. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you throw an object from a great height, so that it reaches very nearly terminal velocity by time it hits the ground. By measuring the impact, you determine that this terminal velocity is -49 mi sec.A. Write the equation representing the velocity v(t) of the object at time t seconds given the initial velocity v0 and the fact that acceleration due to gravity 9.8 m/sec2. (Here, assume you're modeling the falling body with the differential equation dy/dt = g-kv, and use the resulting formula or v(t) found in the Tutorial. Of course, you can derive it if you'd like.)B. Determine the value of k, the "continuous percentage growth rate" from the velocity equation, by utilizing the information given concerning the terminal velocity.C. Using the value of k you derived above, at what velocity must the object be thrown upward if you want it to reach its peak height after 3 sec? Approximate your solution to three decimal places, and justify your answer.arrow_forwardA prankster flips a coin off of the Empire Building at a height of 1054 feet above the ground. The initial vertical velocity of the coin is 1.20m/s. In real life, air resistance would limit the maximum speed the coin can attain during its fall, but if air resistance were not a factor and assuming it has practically no horizontal motion, answer the following questions. (1 foot = 0.3048m) a. What would the coin's velocity be when it hits the ground? b. How long would it take to hit? c. How high would the coin be halfway through the total falling time, and how fast would it be falling then?arrow_forwardDon't just send the answer key from Beer's Vectors book. Answer it please.arrow_forward
- The block has mass m = 6.8 kg, the ramp is at an angle of θ = 28 degrees, the coefficient of kinetic friction between the block and the ramp is μk = 0.25, and the applied force is F = 156.4 N. What is the acceleration of the block up the ramp, in m/s2?arrow_forwardA small 930 kg rocket applies its thrusters from rest to generate a net force of F=2260t+2630 newtons, where tt is time. Assuming no air resistance, calculate the rocket's velocity, v, in m/s after 9 seconds. Enter your answer for v in m/s, correct to three significant figures: ........ m/sarrow_forwardYou're driving along at 25m/s with your aunt's valuable antiques in the back of your pickup truck when suddenly you see a giant hole in the road 55 m ahead of you. Fortunately, your foot is right beside the brake and your reaction time is zero! If the coefficients of friction are μs =0.6 and uk =0.3, how much time does it take you to stop if you don't want the antiques to slide and be damaged?arrow_forward
- A person of mass, m, is riding an elevator while standing on a bathroom scale. The person looks at the bathroom scale and it reads 59 % of their weight. What is the acceleration of the elevator? Consider UP to by (+) and express your answer in m/s/s to 2 significant figures.arrow_forwardA warehouse worker drops an 8 kg box from a height of a half a meter. What is its velocity when it hits the floor? (Ignore any air resistance, and let g = 10 m/s²). %3D Enter your answer in m/s. Your answer must be a positive number with up to two decimal places; do not write anything else. Answer:arrow_forwardYou practice shooting at a target that is placed 22 m away from and 2 m below the nozzle of your toy gun, which has a barrel of length 0.6 m. You find out that you can hit the target when you fire upwards at an angle of 30⁰. What is the acceleration of the toy bullet in the barrel ?arrow_forward
- A ball with mass 0.55 kg is thrown upward with initial velocity 5 m/s from the roof of a building 20 m high. Assume there is a force due to air resistance of magnitude directed opposite to the velocity, where 30 the velocity v is measured in m/s. NOTE: Use g=9.8 m/s² as the acceleration due to gravity. Round your answers to 2 decimal places. a) Find the maximum height above the ground that the ball reaches. Height: m b) Find the time that the ball hits the ground. Time: secondsarrow_forwardConsider the folowing situation: Ꮎ A 2 kg box on an inclined frictionless table pulled up the incline by a cord. If the box is pulled up the incline at a constant velocity, what is the magnitude of the tension in the cord? The angle that the table makes with the horizontal is = 15 degrees. Round your response to two decimals.arrow_forwardA flea jumps by exerting a force of 1.32 x 105 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.16 x 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 x 107 kg. (Let us assume that Fwind points to the right. We will consider this to be the +x direction and vertical to be the +y direction.) magnitude 11.5 x Did you draw a free-body diagram, and identify the forces acting on the flea? Consider the forces acting on the flea during the time it is in contact with the ground. m/s2 85.3 x Review vector components. In which of the four quadrants is the resultant force located?° (measured clockwise from the vertical) direction Tutorial Supporting Materialsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY