Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 73GP
A bicyclist can coast down a 5.0° hill at a constant speed of 6.0km/h. If the force of air resistance is proportional to the speed υ so that Fair = cυ, calculate (a) the value of the constant c, and (b) the average force that must be applied in order to descend the hill at 18.0km/h. The mass of the cyclist plus bicycle is 80.0kg.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1000 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force between boat and water is proportional to the speed v of the boat: fk 70v, where v is in meters per second and fk is in newtons. Find the time required for the boat to slow to 45 km/h.
A 112 kg crate is pushed at constant speed up a frictionless inclined plane of θ = 59 ° with the horizontal. Assuming one pushes with a horizontal force, what is the magnitude of the force F (in N) required to do this?
An airliner of mass 1.70 * 105 kg lands at a speed of 75.0 m>s. As it travels along the runway, the combined effects of air resistance, friction from the tires, and reverse thrust from the engines produce a constant force of 2.90 * 105 N opposite to the airliner’s motion. What distance along the runway does the airliner travel before coming to a halt?
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
above the horizontal) is connected by a string going over a pulley to a hanging object of mass m2. Determine th...
College Physics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
30. A 3000-rn-high mountain is located on the equator. How much faster does a climber on top of the mountain mo...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The focal length of the objective.
Physics (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A parachutist whose mass is 65 kg drops from a helicopter hovering 2500 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b_1 = 20 N*sec/m when the chute is closed and b_2 = 90 N*sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 25 m/sec, after how many seconds will the parachutist reach the ground? Assume that the acceleration due to gravity is 9.81 m/sec^2. How much time will the parachutist reach the ground after? (Round up your answer to two decimal places as needed.)arrow_forwardA 40 kg wooden crate is being pulled across a wooden surface by a force (of magnitude F) that is angled 20° above the horizontal. The coefficient of static friction is 0.5 and the coefficient of kinetic friction is 0.3. (a)Calculāte the minimum force F (in N) that must be exerted to get the crate moving. (b)What is the acceleration (in m/s?) of the crate once it starts to move, if that force (F) is maintained?arrow_forwardA parachutist whose mass is 65 kg drops from a helicopter hovering 1500 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b₁ = 20 N-sec/m when the chute is closed and b₂ = 90 N-sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 25 m/sec, after how many seconds will the parachutist reach the ground? Assume that the acceleration due to gravity is 9.81 m/sec². The parachutist will reach the ground after (Round to two decimal places as needed.) seconds.arrow_forward
- A block is sliding down a ramp at an angle of 0 = 29° to the horizontal. Its initial speed is 1.2 m/s. After sliding 11.9 m along the ramp, it comes to a rest. What is the coefficient of kinetic friction, uk, between the block and the ramp? Ꮎarrow_forwardA parachutist whose mass is 80 kg drops from a helicopter hovering 1000 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b, = 30 N-sec/m when the chute is closed and b, = 90 N-sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 20 m/sec, after how many seconds will the parachutist reach the ground? Assume that the acceleration due to gravity is 9.81 m/ sec.arrow_forwardA parachutist whose mass is 85 kg drops from a helicopter hovering 2000 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b 1 = 20 N - sec/m when the chute is closed and b 2 = 90 N - sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 35 m/sec, after how many seconds will the parachutist reach the ground? Assume that the acceleration due to gravity is 9.81 m/ sec ^2arrow_forward
- A block with a mass of 4.0 kg is released from rest and slides down a long, smooth ramp. The incline of the ramp is 46.0 degrees, and the coefficient of kinetic friction is μ=0.346. How far will the block travel in 1.00 s, assuming it does not reach the end of the ramp?arrow_forwardThe figure shows an overhead view of a 0.026 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force F has a magnitude of 3N and is at e, - 31. Force F2 has a magnitude of 10 N and is at 02- 33". In unit-vector notation, what is t third force if the lemon half (a) is stationary, (b) has the constant velocity V (137-14) m (12h- 14) m/s?, where t is time? %3D and (c) has the V = %3Darrow_forwardPlease Asaparrow_forward
- The figure shows an overhead view of a 0.026 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force F has a magnitude of 3N and is at 8, -31. Force F2 has a magnitude of 10 N and is at 02 = 33". In unit-vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity V= (131- 14) m/s, and (c) has the V = (12i – 14i) m/s², where t is time? %3D %3D jUnits (a) Number i i+ jUnits (b) Number (c) Number i+ jUnitsarrow_forwardAn SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is the numeric value, in newtons, for the net force in Part (a)? .arrow_forwardAn box of mass 12kg is pulled up a frictionless inclined plane by a force of 200N parallel to its direction of motion. The plane is at an angle of 20° to the horizontal. What is the resultant force on the box?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY