Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 68GP
(a) In Fig. 4–54, if mA = mB = 1.00 kg and θ 33.0º, what will be the acceleration of the system? (b) If mA = 1.00 kg and the system remains at rest, what must the mass mg be? (c) Calculate the tension in the cord for (a) and (b).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) Two snowcats in Antarctica are towing a housing unit north, as shown in Fig. 4–50. The sum of the forces F→A and F→B exerted on the unit by the horizontal cables is north, parallel to the line L, and FA = 4500 N. Determine FB and the magnitude of F→A+F→B.
- (a) In Fig. 4–54, if ma = mB = 1.00 kg and 0 = 33.0°, what
will be the acceleration of the system? (b) If ma
and the system remains at rest, what must the mass mg be?
(c) Calculate the tension in the cord for (a) and (b).
%3D
1.00 kg
2-33. Determine the resultant of the force system in Fig. P 2-33 and locate
it with reepect to point O. The 100-lb and 80-lb forces are tangent to the circle.
100
30
FIG. P 2-33
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Particles of light have no mass. Does the Sun’s mass change as a result of all the light it emits? Explain.
Modern Physics
42. A bicycle wheel is rotating at 50 rpm when the cyclist begins to
pedal harder, giving the wheel a constant...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
55. A friend tells you that aluminum lies beneath the layer of white plastic on a refrigerator door. How could ...
Conceptual Physical Science (6th Edition)
Description of Motion:
Tutorials in Introductory Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Suppose the coefficient of kinetic friction between mA and the plane in Fig. 3 is µk=0.15 and that mA = mB = 2.7 kg. As moves down, determine the magnitude of the acceleration of mA and mB , given θ = 34°.(b) What smallest value of µk will keep the system from accelerating?arrow_forwardTwo blocks made of different materials, connected by a thin cord, slide down a plane ramp inclined at an angle 0 to the horizontal, Fig. 4–76 (block B is above block A). The masses of the blocks are ma and mB, and the coefficients of fric- tion are ua and µr. If ma = mß = 5.0 kg, and HA = 0.20 and uR = 0.30, determine (a) the acceleration of the blocks and (b) the tension in the cord, for an angle 0 = 32°. MB FIGURE 4–76 Problem 94.arrow_forward(III) (a) Suppose the coefficient of kinetic friction between ma and the plane in Fig. 4-62 is µk = 0.15, and that mA = mB = 2.7 kg. As mB moves down, determine the magnitude of the acceleration of ma and mg, given 0 = 34°. (b) What smallest value of pk will keep the system from accelerating? [Ignore masses of the (frictionless) pulley and the cord.] mB FIGURE 4-62 Problem 67.arrow_forward
- (25) The position vector of an object of mass 0.50 kg subject to a constant force is given byr = (at²+bt) + (ct2+dt)j + (et2+ft) k, where a = 2.0 m/s², b = 3.0 m/s, c = 2.5 m/s2, d = -2.0 m/s, e = 1.0 m/s2, and f = 4.0 m/s. What is the angular momentum of the object about the origin at t = 2.0 s? 12) A) (241-122-89 k) kg.m²/s k) kg.m²/s B) (25+14+20 C) (25-14+20 k) kg.m²/s D) (-24 + 10 + 23 k) kg.m²/s E) (241 + 122 +23 k) kg.m²/sarrow_forward(II) A particular race car can cover a quarter-mile track (402m) in 6.40s starting from a standstill. Assuming the acceleration is constant, how many "g's" does the driver experience? If the combined mass of the driver and race car is 535 kg, what horizontal force must the road exert on the tires?arrow_forwardWhat net force is needed to accelerate a 10-kg mass at the rate of 40 m/s2 (neglect all friction): (a) Horizontally?arrow_forward
- (III) A pilot performs an evasive maneuver by diving vertically at 270 m/s .If he can withstand an acceleration of 8.0 g’s without blacking out, at what altitude must he begin to pull his plane out of the dive to avoid crashing into the sea?arrow_forwardThe position of a mass m = 20.0 kg is given in by x(t) = 9.0sin ((25.0)t). Calculate the magnitude of the maximum force acting on the mass.arrow_forwardAnswer in terms of vectors i and jarrow_forward
- As shown in Fig. 4–70, five balls (masses 2.00, 2.05, 2.10, 2.15, 2.20 kg) hang from a crossbar. Each mass is sup- ported by "5-lb test" fishing line which will break when its tension force exceeds 22.2 N (= 5.00 lb). When this device is placed in an elevator, which accelerates upward, only the lines attached to the 2.05 and 2.00 kg masses do not break. Within what range is the elevator's acceleration? 2.20 2.15 2.10 .05 2.00 kg| FIGURE 4-70 Problem 84.arrow_forwardA 28.0-kg block is connected to an empty 2.00-kg bucket by a cord running over a frictionless pulley (Fig. 4–73). The coefficient of static friction between the table and the block is 0.45 and the coefficient of kinetic friction between the table and the block is 0.32. Sand is gradually added to the bucket until the system just begins to move. (a) Calculate the mass of sand added to the bucket. (b) Calculate the acceleration of the system. Ignore mass of cord. 28.0 kg FIGURE 4–73 Problem 90.arrow_forward(3.) In the figure shown below, the 20 kg block is acted upon by friction (assume µk = 0.39) and is connected by cords that do not break or stretch to the freely-hanging 10 kg and 30 kg blocks. (a) Draw a freebody diagram for each object, taking the +x-axis in the direction of motion in each case, and let TL and TR be the tensions in the left and right cords, as shown, respectively, in the figure. f201 TR 30 10 (b) Solve for the friction force fg on the 20 kg block. (C) Apply Newton's 2nd law to all three objects (freebodies), and write the three appropriate equations. (d) Solve these equations simultaneously for the tensions (TL and TR) in the cords and the acceleration (a) of the whole system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License