
Concept explainers
(a)
Thecause of the occurrence of whiplash using Newton’s laws.
(a)

Explanation of Solution
Introduction:
Newton’s First Law of Motion: As per Newton’s First Law of Motion, an object remains in its state of rest or in motion until an external force acts on it. Whiplash is a serious neck injury of the person in the car when the car is struck from behind; the occurrence of whiplash can be explained using Newton’s Law of Motion.
Consider a person is sitting inside a car. The car seat supports the entire body of the person except for his head. When the car is suddenly struck from behind, thecar will accelerate in the forward direction.
Apply Newton’s First Law of Motion,
The seat accelerates the person’s body (except the head) in the forward direction.
As the head is not supported by the seat, it remains in its state of rest. The neck has to accelerate the head resulting in a serious neck injury.
(b)
The way headrest reduces the whiplash.
(b)

Answer to Problem 65A
The headrest reduces the whiplash as the seat accelerates the entire body of the person in the forward direction when the car is struck from behind.
Explanation of Solution
Introduction:
Newton’s First Law of Motion: As per Newton’s First Law of Motion, an object remains in its state of rest or in motion until an external force acts on it. Whiplash is a serious neck injury of the person in the car when the car is struck from behind; the occurrence of whiplash can be explained using Newton’s Law of Motion.
Consider a person is sitting inside a car. When the headrest is provided, the car seat supports the entire body of the person including the head. When the car is suddenly struck from behind, the car will accelerate in the forward direction.
Apply Newton’s First Law of Motion, the seat accelerates the person’s entire body including the head in the forward direction. Hence, this will prevent the person to suffer from a serious neck injury (whiplash).
Conclusion:
Thus, the headrest reduces the whiplash as the seat accelerates the entire body of the person in the forward direction when the car is struck from behind.
Chapter 4 Solutions
Glencoe Physics: Principles and Problems, Student Edition
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
- Part A Consider the mechanism shown in (Figure 1). If a force of F = 350 N is applied to the handle of the toggle clamp, determine the resulting clamping force at A. Express your answer to three significant figures and include the appropriate units. Figure -235 mm- 30 mm 70 mm 30 mm/ 30 275 mm 1 of 1 > ΜΑ ? FA= Value Units Submit Request Answer Return to Assignment Provide Feedbackarrow_forwardgot 4.67 for 1 then 9.33 for the rest then 21.33 for the input and output but it says all are wrongarrow_forwardmase as shown 2) A holy of once sty extually at rest & acted upon by bus mutually perpendicular forces 12 Nand 5N belowilf the particle moves in derection Calculato the magnitude of the acceleration of 12nt R 0 so A SNarrow_forward
- Required information Two speakers vibrate in phase with each other at 523 Hz. At certain points in the room, the sound waves from the two speakers interfere destructively. One such point is 1.45 m from speaker #1 and is between 2.00 m and 4.00 m from speaker #2. The speed of sound in air is 343 m/s. How far is this point from speaker #2? marrow_forwarda) Consider the following function, where A is a constant. y(x,t) = A(x — vt). Can this represent a wave that travels along? Explain. b) Which of the following are possible traveling waves, provide your reasoning and give the velocity of the wave if it can be a traveling wave. e-(a²x²+b²²-2abtx b.1) y(x,t) b.2) y(x,t) = = A sin(ax² - bt²). 2 b.3) y(x,t) = A sin 2π (+) b.4) y(x,t) = A cos² 2π(t-x). b.5) y(x,t) = A cos wt sin(kx - wt)arrow_forwardThe capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. Immediately after the switch is closed, what is the current through the resistor R1, R2, and R3? What is the final charge on the capacitor? Please explain all steps.arrow_forward
- Suppose you have a lens system that is to be used primarily for 620-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength? × nm 434arrow_forwardThe angle between the axes of two polarizing filters is 19.0°. By how much does the second filter reduce the intensity of the light coming through the first? I = 0.106 40 xarrow_forwardAn oil slick on water is 82.3 nm thick and illuminated by white light incident perpendicular to its surface. What color does the oil appear (what is the most constructively reflected wavelength, in nanometers), given its index of refraction is 1.43? (Assume the index of refraction of water is 1.33.) wavelength color 675 × nm red (1 660 nm)arrow_forward
- A 1.50 μF capacitor is charging through a 16.0 Ω resistor using a 15.0 V battery. What will be the current when the capacitor has acquired 1/4 of its maximum charge? Please explain all stepsarrow_forwardIn the circuit shown in the figure (Figure 1), the 6.0 Ω resistor is consuming energy at a rate of 24 J/s when the current through it flows as shown. What are the polarity and emf of the battery E, assuming it has negligible internal resistance? Please explain all steps. I know you need to use the loop rule, but I keep getting the answer wrong.arrow_forwardIf you connect a 1.8 F and a 2.6 F capacitor in series, what will be the equivalent capacitance?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





