Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 62P
A circular cylinder inserted across a stream of flowing water deflects the stream through angle θ, as shown. (This is termed the “Coanda effect.”) For a = 12.5 mm, b = 2.5 mm, V = 3 m/s, and θ = 20°, determine the horizontal component of the force on the cylinder caused by the flowing water.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2. A horizontal nozzle discharges 0.01 m³/s of water into the air.
The supply pipe's diameter (d = 40 mm) is twice as large as
the nozzle diameter (dB = 20 mm). The nozzle is held in place
by a hinge mechanism. Determine the magnitude and
direction of the reaction force at the hinge, if the gauge
pressure at A is 500 000 N/m2. Assume the weight supported
by hinge is negligible. Ans.: Fr= 614 N, 0 = 26.6⁰.
FA
da
8 = 60°
10
pipe bend has a cross sectional area of 0.01 m2 at inlet and 0.0025 m2 at outlet. It bends 90° from its initial direction. The velocity is 4 m/s at inlet with a pressure of 100 kPa gauge. The density is 1000 kg/m3. Calculate the forces acting parallel and perpendicular to the initial direction. V1 v2
Help with this practice question
Chapter 4 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Could the stub arbor-mounted face mill shown in Figure 24.8 be used to machine a T-slot? or why not?
Degarmo's Materials And Processes In Manufacturing
The 50-kg uniform triangular plate is supported by two small hinges A and B and the cable system shown. For the...
Engineering Mechanics: Statics
Determine the normal stress in each member of the truss structure. All joints are ball joint, and the material ...
Introduction To Finite Element Analysis And Design
ICA 8-57
A 100-watt [W] motor (60% efficient) is available to raise a load 5 meters [m] into the air. If the ta...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
The cable wraps around the inner core, and the spool does not slip on the platform P.
Engineering Mechanics: Dynamics (14th Edition)
14. A cube of material X, 1 inch [in] on all sides, has a mass of 0.05 kilograms [kg]. Determine the specific g...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As seen in Figure below, the water passing through the flanged connection system is discharged to the atmosphere from the outlets no. 2 and no. 3. Calculate the force acting on the flange in the x-direction according to the figures given in the figure. (Ignore the effect of gravity and the friction of the fluid with the wall).arrow_forwardA pipe of diameter 10cm conveying 200 liters/s of water has bend of angle (θ = 90⁰) and θ = 0⁰ through horizontal plane. Find theresultant force exerted on the bend if the pressure at the inlet and outlet of the bend are 15N/cm2 and 10 N/cm2respectivelyarrow_forwardCalculate the resulting force on the bubble shown: p= 10 kg/m³ V = 0.10 m³ 3 Po= 100 kg/m³ g= 10 m/s²arrow_forward
- The figure below shows a cylindrical tank of radius R = 0.5 m and height H = 1 m filled to the brim with water. The tank is subsequently rotated about its axis at an angular velocity w so that 30% of the water spills over. Determine the angular velocity w of the tank and the water gage pressure P3 at Point B which is located at the bottom of the tank at a radial distance of R/2 from the center. W = 1. [63.56210021, 67.49377651 rpm. PB = 2. [5.233635, 5.557365 kPa. Air R H Water! Water! B R/2arrow_forwardWater at a rate of 30 kg/s is flowing in the elbow shown below. If the mass of the elbow and water in it is 50 kg, D = 13 cm, d = 6 cm, e = 45°, B = 1.03. What is the vertical force needed to hold it in position? %3D %3D Flow direction 581 N 759 N 625 N 874 N 811 N 679 N O 723 Narrow_forwardA lead ball of radius 5 cm is immersed in water. Calculate the thrust it undergoes. Consider the density of water as 1000 km/m^3. The formula for the volume of the ball is V=3/4 πr^3arrow_forward
- Consider the water jet moving at 12.8 m/s (see Figure Q1). The water jet is split so that one-third of the water moves toward A. Determine the magnitude and direction of the force on the stationary splitter. The splitter is moving to the right at 6 m/s. Assume ideal flow in a horizontal plane. v = 12.8 m/s D = 35 mm Plan view Vo = 6 m/s Figure Q1: Water jet deflected by a moving splitterarrow_forwardThe cart in the figure below is accelerated along a level track by a jet of water that strikes the curved vane. Determine the time it takes to accelerate the cart from rest to U = 10 m/s. 0 = 30° D = 25.0 mm U = 10.0 m/s V = 30.0 m/s %3D M = 15.0 kgarrow_forwardWater flows into the horizontal bend fitting at A with a velocity of V = 4.2 m/s, and exits at B into the atmosphere as shown in (Figure 1). A 150 mm 200 mm 400 mm y 30° B Determine the r-component of force at C needed to hold the fitting in place. Determine the y-component of force at C needed to hold the fitting in place. Determine the moment at C needed to hold the fitting in place.arrow_forward
- Please answer quickly. Thanksarrow_forwardWater is flowing into and discharging from a pipe U-section as shown . At flange (1), the total absolute pressure is 200 kPa, and 55 kg/s flows into the pipe. At flange (2), the total pressure is 150 kPa. At location (3), 15 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x- and z-forces at the two flanges connecting the pipe. Discuss the significance of gravity force for this problem. Take the momentum-flux correction factor to be 1.03 throughout the pipesarrow_forwardA boat having a mass of 80 Mg rests on the bottom of the lake and displaces 11.75 m^3 of water. Since the lifting capacity of the crane is only F = 550 kN, two balloons are attached to the sides of the boat and filled with air. The volume of a sphere is V =4/3πr^3. ρw = 1000 kg/m^3.Determine the smallest radius r of each spherical balloon that is needed to lift the boat. Neglect the mass of air and of the balloon for the calculation required for the lift and What is the mass of air in each balloon if the air and water temperature is 12∘C? The balloons are at an average depth of 20 mm. The gas constant for air is R= 286.9 J/(kg⋅K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License