Student Solutions Manual for Gallian's Contemporary Abstract Algebra, 9th
9th Edition
ISBN: 9781305657977
Author: Gallian, Joseph
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 60E
Given the fact that U(49) is cyclic and has 42 elements, deduce thenumber of generators that U(49) has without actually finding any ofthe generators.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Question 3
over a field K.
In this question, MË(K) denotes the set of n × n matrices
(a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is
equivalent to A-¹? Justify your answer.
(b) Let B be given by
8
B = 0 7 7
0 -7 7
Working over the field F2 with 2 elements, compute the rank of B as an element
of M2(F2).
(c) Let
1
C
-1 1
[4]
[6]
and consider C as an element of M3(Q). Determine the minimal polynomial
mc(x) and hence, or otherwise, show that C can not be diagonalised.
[7]
(d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write
down all the eigenvalues. Show your working.
[8]
Chapter 4 Solutions
Student Solutions Manual for Gallian's Contemporary Abstract Algebra, 9th
Ch. 4 - Find all generators of Z6,Z8,andZ20 .Ch. 4 - Suppose that a,b,andc are cyclic groups of orders...Ch. 4 - List the elements of the subgroups 20and10inZ30 ....Ch. 4 - List the elements of the subgroups 3and15inZ18 ....Ch. 4 - List the elements of the subgroups 3and7inU(20) .Ch. 4 - What do Exercises 3, 4, and 5 have in common? Try...Ch. 4 - Find an example of a noncyclic group, all of whose...Ch. 4 - Let a be an element of a group and let a=15 ....Ch. 4 - Prob. 9ECh. 4 - In Z24 , list all generators for the subgroup of...
Ch. 4 - Let G be a group and let aG . Prove that a1=a .Ch. 4 - In Z, find all generators of the subgroup 3 . If a...Ch. 4 - In Z24 , find a generator for 2110 . Suppose that...Ch. 4 - Suppose that a cyclic group G has exactly three...Ch. 4 - Let G be an Abelian group and let H=gG||g divides...Ch. 4 - Complete the statement: a|=|a2 if and only if |a|...Ch. 4 - Complete the statement: a2|=|a12 if and only if ....Ch. 4 - Let a be a group element and a= . Complete the...Ch. 4 - If a cyclic group has an element of infinite...Ch. 4 - Suppose that G is an Abelian group of order 35 and...Ch. 4 - Let G be a group and let a be an element of G. a....Ch. 4 - Prove that a group of order 3 must be cyclic.Ch. 4 - Let Z denote the group of integers under addition....Ch. 4 - For any element a in any group G, prove that a is...Ch. 4 - If d is a positive integer, d2 , and d divides n,...Ch. 4 - Find all generators of Z. Let a be a group element...Ch. 4 - Prove that C*, the group of nonzero complex...Ch. 4 - Let a be a group element that has infinite order....Ch. 4 - List all the elements of order 8 in Z8000000 . How...Ch. 4 - Suppose that G is a group with more than one...Ch. 4 - Let G be a finite group. Show that there exists a...Ch. 4 - Determine the subgroup lattice for Z12 ....Ch. 4 - Determine the subgroup lattice for Z8 . Generalize...Ch. 4 - Prove that a finite group is the union of proper...Ch. 4 - Show that the group of positive rational numbers...Ch. 4 - Consider the set {4, 8, 12, 16}. Show that this...Ch. 4 - Give an example of a group that has exactly 6...Ch. 4 - Let m and n be elements of the group Z. Find a...Ch. 4 - Suppose that a andb are group elements that...Ch. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Let F and F’be distinct reflections in D21 . What...Ch. 4 - Suppose that H is a subgroup of a group G and H=10...Ch. 4 - Prob. 44ECh. 4 - If G is an infinite group, what can you say about...Ch. 4 - If G is a cyclic group of order n, prove that for...Ch. 4 - For each positive integer n, prove that C*, the...Ch. 4 - Prove or disprove that H=nZn is divisible by both...Ch. 4 - Prob. 49ECh. 4 - Prob. 50ECh. 4 - Prob. 51ECh. 4 - Prob. 52ECh. 4 - Prob. 53ECh. 4 - Prob. 54ECh. 4 - Prob. 55ECh. 4 - Prob. 56ECh. 4 - Prob. 57ECh. 4 - Prob. 58ECh. 4 - Prove that no group can have exactly two elements...Ch. 4 - Given the fact that U(49) is cyclic and has 42...Ch. 4 - Let a andb be elements of a group. If a=10andb=21...Ch. 4 - Let a andb belong to a group. If |a| and |b| are...Ch. 4 - Let a andb belong to a group. If a=24andb=10 ,...Ch. 4 - Prove that U(2n)(n3) is not cyclic.Ch. 4 - Prove that for any prime p and positive integer...Ch. 4 - Prove that Zn has an even number of generators if...Ch. 4 - If a5=12 , what are the possibilities for |a|? If...Ch. 4 - Suppose that x=n . Find a necessary and sufficient...Ch. 4 - Let a be a group element such that a=48 . For each...Ch. 4 - Prove that H={[1n01]|nZ} is a cyclic subgroup of...Ch. 4 - Suppose that |a| and |b| are elements of a group...Ch. 4 - Let a andb belong to a group. If a=12,b=22,andabe...Ch. 4 - Determine (81),(60)and(105) where is the Euler...Ch. 4 - If n is an even integer prove that (2n)=2(n) .Ch. 4 - Let a andb belong to some group. Suppose that...Ch. 4 - For every integer n greater than 2, prove that the...Ch. 4 - (2008 GRE Practice Exam) If x is an element of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
- 2. What is the total length of the shortest path that goes from (0,4) to a point on the x-axis, then to a point on the line y = 6, then to (18.4)?arrow_forwardموضوع الدرس Prove that Determine the following groups Homz(QZ) Hom = (Q13,Z) Homz(Q), Hom/z/nZ, Qt for neN- (2) Every factor group of adivisible group is divisble. • If R is a Skew ficald (aring with identity and each non Zero element is invertible then every R-module is free.arrow_forwardI have ai answers but incorrectarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License