EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 57GP
CE Predict/Explain Suppose the elevator in the previous problem is rising with a constant upward acceleration, rather than constant velocity. (a) In this case, would the coin’s time of flight be greater than, less than, or equal to its time of flight when the person was at rest? (b) Choose the best explanation from among the following:
- I. The coin has the same acceleration once it is tossed, whether the elevator accelerates or not.
- II. The elevator’s upward speed increases during the coin’s flight, and hence it catches up with the coin at a greater height than before.
- III. The coin’s downward acceptation is less than before because the elevator's upward acceleration partially cancels it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ball is thrown vertically upward from the ground with a speed of 36.0 m/s. Suppose theacceleration of gravity were only 2.00 m/s 2 instead of 9.80 m/s 2a) At what time after being thrown does the ball have a velocity of 12.0 m/s upward?b) At what time does it have a velocity of 12.0 m/s downward?c) When is the velocity of the ball zero?d) When is the displacement of the ball zero?e) What are the magnitude and direction of the acceleration while the ball is moving upward?f) What are the magnitude and direction of the acceleration while the ball is moving downward?g) What are the magnitude and direction of the acceleration when it is at the highest point?
Which of the following is TRUE for an object thrown along horizontal?
Choose the answer:
a. it has a constant horizontal velocity
b. it has a uniform vertical acceleration
c. both a and b
c. neither a nor b
Which of the following ideas is true about projectile motion with no air drag?
Select one:
a. The acceleration is +g when the object is rising and -g when falling.
b. The total velocity of the object is zero at the point of maximum elevation.
c. The horizontal motion is independent of the vertical motion.
d. The trajectory will depend on the object's mass as well as its initial velocity and launch angle.
Chapter 4 Solutions
EBK PHYSICS
Ch. 4.1 - The equations of motion of an object are x = (1...Ch. 4.2 - A sailor drops a pair of binoculars from the crows...Ch. 4.3 - Two objects, A and B, are launched horizontally,...Ch. 4.4 - A projectile is launched and lands at the same...Ch. 4.5 - A baseball player throws a ball to another player...Ch. 4 - What is the acceleration of a projectile when it...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - A projectile is launched from level ground. When...Ch. 4 - In a game of baseball a player hits a high fly...Ch. 4 - A projectile is launched with an initial velocity...
Ch. 4 - A projectile is launched from a level surface with...Ch. 4 - Do projectiles for which air resistance is...Ch. 4 - Two projectiles are launched from the same point...Ch. 4 - A child rides on a pony walking with constant...Ch. 4 - Driving down the highway, you find yourself behind...Ch. 4 - A projectile is launched from the origin of a...Ch. 4 - Predict/Explain As you walk briskly down the...Ch. 4 - A sailboat runs before the wind with a constant...Ch. 4 - As you walk to class with a constant speed of 1.75...Ch. 4 - Starting from rest, a car accelerates at 2.0 m/s2...Ch. 4 - Predict/Calculate A particle passes through the...Ch. 4 - A skateboarder travels on a horizontal surface...Ch. 4 - A hot-air balloon is drifting in level flight due...Ch. 4 - An electron in a cathode-ray tube is traveling...Ch. 4 - Two canoeists start paddling at the same time and...Ch. 4 - Predict/Explain Two divers run horizontally off...Ch. 4 - Predict/Explain Two youngsters dive off an...Ch. 4 - An archer shoots an arrow horizontally at a target...Ch. 4 - Victoria Falls The great, gray-green, greasy...Ch. 4 - A diver runs horizontally off the end of a diving...Ch. 4 - An astronaut on the planet Zircon tosses a rock...Ch. 4 - Predict/Calculate Pitchers Mounds Pitchers mounds...Ch. 4 - Playing shortstop, you pick up a ground ball and...Ch. 4 - Predict/Calculate A crow is flying horizontally...Ch. 4 - A mountain climber jumps a 2.8-m-wide crevasse by...Ch. 4 - Predict/Calculate A white-crowned sparrow flying...Ch. 4 - Pumpkin Toss In Denver, children bring their old...Ch. 4 - Fairgoers ride a Ferris wheel with a radius of...Ch. 4 - Predict/Calculate A swimmer runs horizontally off...Ch. 4 - Baseball and the Washington Monument On August 25,...Ch. 4 - A basketball is thrown horizontally with an...Ch. 4 - Predict/Calculate A ball rolls off a table and...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - A cannonball is launched at an angle above level...Ch. 4 - A second baseman tosses the ball to the first...Ch. 4 - A soccer ball is kicked with a speed of 15.6 m/s...Ch. 4 - In a game of basketball a forward makes a bounce...Ch. 4 - Predict/Calculate Snowballs are thrown with a...Ch. 4 - In Problem 34, find the direction of motion of the...Ch. 4 - A golfer gives a ball a maximum initial speed of...Ch. 4 - What is the highest tree the ball in the previous...Ch. 4 - The hang time of a punt is measured to be 4.50 s....Ch. 4 - In a friendly game of handball, you hit the ball...Ch. 4 - On a hot summer day a young girl swings on a rope...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Punkin Chunkin In Dover, Delaware, a...Ch. 4 - A dolphin jumps with an initial velocity of 12.0...Ch. 4 - A player passes a basketball to another player who...Ch. 4 - A golf ball is struck with a five iron on level...Ch. 4 - Predict/Explain You throw a ball into the air with...Ch. 4 - A football quarterback shows off his skill by...Ch. 4 - A clever inventor has created a device that can...Ch. 4 - Predict/Calculate Volcanoes on lo Astronomers have...Ch. 4 - Predict/Calculate A soccer ball is kicked with an...Ch. 4 - A soccer ball is kicked with an initial speed of...Ch. 4 - An archer shoots an arrow over a castle wall by...Ch. 4 - CE Child 1 throws a snowball horizontally from the...Ch. 4 - CE The penguin to the left in the accompanying...Ch. 4 - CE Dolphins may leap from the water just for the...Ch. 4 - CE Predict/Explain A person flips a coin into the...Ch. 4 - CE Predict/Explain Suppose the elevator in the...Ch. 4 - A train moving with constant velocity travels 170...Ch. 4 - A tennis ball is struck in such a way that it...Ch. 4 - A person tosses a ball for her puppy to retrieve....Ch. 4 - An osprey flies horizontally with a constant speed...Ch. 4 - Predict/Calculate A hot-air balloon rises from the...Ch. 4 - In a friendly neighborhood squirt gun contest a...Ch. 4 - BIO Spitting Llamas An agitated llama may spit to...Ch. 4 - A particle leaves the origin with an initial...Ch. 4 - BIO When the dried-up seed pod of a scotch broom...Ch. 4 - Trick Shot In an Internet video an athlete...Ch. 4 - A shot-putter throws the shot with an initial...Ch. 4 - Two marbles are launched at t = 0 in the...Ch. 4 - Rescue Swimmers Coast Guard rescue swimmers are...Ch. 4 - A football player kicks a field goal, launching...Ch. 4 - A ball thrown straight upward returns to its...Ch. 4 - Predict/Calculate To decide who pays for lunch, a...Ch. 4 - Predict/Calculate A cannon is placed at the bottom...Ch. 4 - A golfer hits a shot to an elevated green. The...Ch. 4 - Shot Put Record A mens world record for the shot...Ch. 4 - Referring to Conceptual Example 4-13, suppose the...Ch. 4 - A Lob Pass Versus a Bullet A quarterback can throw...Ch. 4 - For summertime fun, you decide to combine diving...Ch. 4 - Landing on Mars When the twin exploration rovers,...Ch. 4 - Collision Course A useful rule of thumb in...Ch. 4 - As discussed in Example 4-14, the archerfish hunts...Ch. 4 - Find the launch angle for which the range and...Ch. 4 - A mountain climber jumps a crevasse of width W by...Ch. 4 - Landing on a Different Level A projectile fired...Ch. 4 - A mountain climber jumps a crevasse by leaping...Ch. 4 - Projectiles: Coming or Going? Most projectiles...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Referring to Example 4-9 (a) At what launch angle...Ch. 4 - Referring to Example 4-9 Suppose that the golf...Ch. 4 - Referring to Example 4-11 Suppose the ball is...Ch. 4 - Predict/Calculate Referring to Example 4-11...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Explain how you can determine whether fault N is older or younger than igneous intrusion J.
Applications and Investigations in Earth Science (9th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
2. List the subdivisions of the thoracic and abdominopelvic cavities.
Human Anatomy & Physiology (2nd Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
Which element do you expect to be most like magnesium? Why? a. potassium b. silver c. bromine d. calcium e. lea...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in contact with the pavement, the lower side of the ball is temporarily f fattened. Suppose the maximum depth of the dent is on the order of 1 cm. Find the order of magnitude of the maximum acceleration of the ball while it is in contact with the pavement. State your assumptions, the quantities you estimate, and the values you estimate for them.arrow_forwardAn ice sled powered by a rocket engine sum from rest on a large frozen lake and accelerates at + 40 ft/s2. After some time t1, the rocket engine is shut down and the sled moves with constant velocity v for a time t2. If the total distance traveled by the sled is 17 500 ft and the total time is 90 s. find (a) the times t1 and t2 and (b) the velocity v. At the 17 500-ft mark, the sled begins to accelerate at 20 ft/s2. (c) What is the final position of the sled when it comes to rest? (d) How long does it take to come to rest?arrow_forwardA student derides to measure the muzzle velocity of a pellet shot from his gun. He points the gun horizontally. He place a target on a vertical wall a distance x away from the gun. He pellet hits the target a vertical distance y below the gun. (a) Show that the position of the pellet when traveling through the air is given by y = Ax2, where A it a constant. (b) Express the constant A In terms of the initial (muzzle) velocity and the free-fall acceleration. (c) If x = 3.00 m and y = 0 210 m, what is the initial speed of the pellet?arrow_forward
- Suppose you throw a rock nearly straight up at a coconut in a palm tree and the rock just misses the coconut on the way up but hits the coconut on the way down. Neglecting air resistance and the slight horizontal variation in motion to account for the hit and miss of the coconut, how does the speed of the rock when it hits the coconut on the way down compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way up or down? Explain.arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive roadrunner. The coyote wears a new pair of power roller skates, which provide a constant horizontal acceleration of 15.0 m/s2, as shown in Figure P3.59. The coyote starts off at rest 70.0 m from the edge of a cliff at the instant the roadrunner zips in the direction of the cliff, (a) If the roadrunner moves with constant speed, find the minimum speed the roadrunner must have to reach the cliff before the coyote. (b) If the cliff is 1.00 102 m above the base of a canyon, find where the coyote lands in the canyon. (Assume his skates are still in operation when he is in flight and that his horizontal component of acceleration remains constant at 15.0 m/s2.) Figure P3.59arrow_forwardProfessional Application Dr. John Paul Stapp was U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back to rest in only 1.40 s! Calculate his (a) acceleration and (b) deceleration. Express each in multiples of g (9.80 m/s2) by taking its ratio to the acceleration of gravity.arrow_forward
- A moving beltway at an airport has a speed 1 and a length L. A woman stands on the beltway as it moves from one end to the other, while a man in a hurry to reach his flight walks on the beltway with a speed of 2 relative to the moving beltway. (a) What time interval is required for the woman to travel the distance L? (b) What time interval is required for the man to travel this distance? (c) A second beltway is located next to the first one. It is identical to the first one but moves in the opposite direction at speed 1. Just as the man steps onto the beginning of the beltway and begins to walk at speed relative to his beltway, a child steps on the other end of the adjacent beltway. The child stands at rest relative to this second beltway. How long after stepping on the beltway does the man pass the child?arrow_forwardAn express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s2 as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?arrow_forwardAn astronaut on the surface of the Moon fires a cannon to launch an experiment package, which leaves the barrel moving horizontally. Assume the free-fall acceleration on the Moon is one-sixth of that on the Earth. (a) What must the muzzle speed of the package be so that it travels completely around the Moon and returns to its original location? (b) What time interval does this trip around the Moon require?arrow_forward
- An aging coyote cannot run fast enough to catch a road-runner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2 (Fig. P1.78). The coyote starts at rest 70.0 in from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff, (a) Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff', the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyotes skates remain horizontal and continue to operate while he is in flight, so his acceleration while in the air ss (15.0 - 9.80j) m/s2, (b) The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands, (c) Determine the components of the coyotes impact velocity.arrow_forwardAn aging coyote cannot run fast enough to catch a roadrunner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2 (Fig. P3.57). The coyote starts at rest 70.0 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. (a) Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyotes skates remain horizontal and continue to operate while he is in flight, so his acceleration while in the air is (15.0i9.80j) m/s2. (b) The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. (c) Determine the components of the coyotes impact velocity.arrow_forwardYou drop a ball from a window located on an upper floor of a building. It strikes the ground with speed v. You now repeat the drop, but your friend down on the ground throws another ball upward at the same speed v, releasing her ball at the same moment that you drop yours from the window. At some location, the balls pass each other. Is this location (a) at the halfway point between window and ground, (b) above this point, or (c) below this point?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY