EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 1PCE
Predict/Explain As you walk briskly down the street, you toss a small ball into the air. (a) If you want the ball to land in your hand when it comes back down, should you toss the ball straight upward, in a forward direction, or in a backward direction, relative to your body? (b) Choose the best explanation from among the following:
- I. If the ball is thrown straight up you will leave it behind.
- II. You have to throw the ball in the direction you are walking.
- III. The ball moves in the forward direction with your walking speed at all times.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:11
Students have asked these similar questions
As you walk briskly down the street, you tossa small ball into the air. (a) If you want the ball to land in your handwhen it comes back down, should you toss the ball straight upward,in a forward direction, or in a backward direction, relative to yourbody? (b) Choose the best explanation from among the following:I. If the ball is thrown straight up you will leave it behind.II. You have to throw the ball in the direction you are walking.III. The ball moves in the forward direction with your walkingspeed at all times.
3. A baseball player throws a 145g ball toward home-plate from the out-field. The throw was
made at 30.0m/s, 30.0° above horizontal [South]. If the baseball player releases the ball
2.45m above the ground;
a. Determine the velocity (speed and direction) at the moment the ball strikes the
'turf (ground).
b. Determine the time at which the ball possessed a minimal amount of kinetic
c. Determine minimum level of kinetic energy for the ball throughout its flight. |
energy.
Driving down the highway, you find yourself behind a heavilyloaded tomato truck. You follow close behind the truck, keeping the same speed. Suddenly a tomato falls from the back of thetruck. Will the tomato hit your car or land on the road, assuming you continue moving with the same speed and direction?Explain.
Chapter 4 Solutions
EBK PHYSICS
Ch. 4.1 - The equations of motion of an object are x = (1...Ch. 4.2 - A sailor drops a pair of binoculars from the crows...Ch. 4.3 - Two objects, A and B, are launched horizontally,...Ch. 4.4 - A projectile is launched and lands at the same...Ch. 4.5 - A baseball player throws a ball to another player...Ch. 4 - What is the acceleration of a projectile when it...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - A projectile is launched from level ground. When...Ch. 4 - In a game of baseball a player hits a high fly...Ch. 4 - A projectile is launched with an initial velocity...
Ch. 4 - A projectile is launched from a level surface with...Ch. 4 - Do projectiles for which air resistance is...Ch. 4 - Two projectiles are launched from the same point...Ch. 4 - A child rides on a pony walking with constant...Ch. 4 - Driving down the highway, you find yourself behind...Ch. 4 - A projectile is launched from the origin of a...Ch. 4 - Predict/Explain As you walk briskly down the...Ch. 4 - A sailboat runs before the wind with a constant...Ch. 4 - As you walk to class with a constant speed of 1.75...Ch. 4 - Starting from rest, a car accelerates at 2.0 m/s2...Ch. 4 - Predict/Calculate A particle passes through the...Ch. 4 - A skateboarder travels on a horizontal surface...Ch. 4 - A hot-air balloon is drifting in level flight due...Ch. 4 - An electron in a cathode-ray tube is traveling...Ch. 4 - Two canoeists start paddling at the same time and...Ch. 4 - Predict/Explain Two divers run horizontally off...Ch. 4 - Predict/Explain Two youngsters dive off an...Ch. 4 - An archer shoots an arrow horizontally at a target...Ch. 4 - Victoria Falls The great, gray-green, greasy...Ch. 4 - A diver runs horizontally off the end of a diving...Ch. 4 - An astronaut on the planet Zircon tosses a rock...Ch. 4 - Predict/Calculate Pitchers Mounds Pitchers mounds...Ch. 4 - Playing shortstop, you pick up a ground ball and...Ch. 4 - Predict/Calculate A crow is flying horizontally...Ch. 4 - A mountain climber jumps a 2.8-m-wide crevasse by...Ch. 4 - Predict/Calculate A white-crowned sparrow flying...Ch. 4 - Pumpkin Toss In Denver, children bring their old...Ch. 4 - Fairgoers ride a Ferris wheel with a radius of...Ch. 4 - Predict/Calculate A swimmer runs horizontally off...Ch. 4 - Baseball and the Washington Monument On August 25,...Ch. 4 - A basketball is thrown horizontally with an...Ch. 4 - Predict/Calculate A ball rolls off a table and...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - A cannonball is launched at an angle above level...Ch. 4 - A second baseman tosses the ball to the first...Ch. 4 - A soccer ball is kicked with a speed of 15.6 m/s...Ch. 4 - In a game of basketball a forward makes a bounce...Ch. 4 - Predict/Calculate Snowballs are thrown with a...Ch. 4 - In Problem 34, find the direction of motion of the...Ch. 4 - A golfer gives a ball a maximum initial speed of...Ch. 4 - What is the highest tree the ball in the previous...Ch. 4 - The hang time of a punt is measured to be 4.50 s....Ch. 4 - In a friendly game of handball, you hit the ball...Ch. 4 - On a hot summer day a young girl swings on a rope...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Punkin Chunkin In Dover, Delaware, a...Ch. 4 - A dolphin jumps with an initial velocity of 12.0...Ch. 4 - A player passes a basketball to another player who...Ch. 4 - A golf ball is struck with a five iron on level...Ch. 4 - Predict/Explain You throw a ball into the air with...Ch. 4 - A football quarterback shows off his skill by...Ch. 4 - A clever inventor has created a device that can...Ch. 4 - Predict/Calculate Volcanoes on lo Astronomers have...Ch. 4 - Predict/Calculate A soccer ball is kicked with an...Ch. 4 - A soccer ball is kicked with an initial speed of...Ch. 4 - An archer shoots an arrow over a castle wall by...Ch. 4 - CE Child 1 throws a snowball horizontally from the...Ch. 4 - CE The penguin to the left in the accompanying...Ch. 4 - CE Dolphins may leap from the water just for the...Ch. 4 - CE Predict/Explain A person flips a coin into the...Ch. 4 - CE Predict/Explain Suppose the elevator in the...Ch. 4 - A train moving with constant velocity travels 170...Ch. 4 - A tennis ball is struck in such a way that it...Ch. 4 - A person tosses a ball for her puppy to retrieve....Ch. 4 - An osprey flies horizontally with a constant speed...Ch. 4 - Predict/Calculate A hot-air balloon rises from the...Ch. 4 - In a friendly neighborhood squirt gun contest a...Ch. 4 - BIO Spitting Llamas An agitated llama may spit to...Ch. 4 - A particle leaves the origin with an initial...Ch. 4 - BIO When the dried-up seed pod of a scotch broom...Ch. 4 - Trick Shot In an Internet video an athlete...Ch. 4 - A shot-putter throws the shot with an initial...Ch. 4 - Two marbles are launched at t = 0 in the...Ch. 4 - Rescue Swimmers Coast Guard rescue swimmers are...Ch. 4 - A football player kicks a field goal, launching...Ch. 4 - A ball thrown straight upward returns to its...Ch. 4 - Predict/Calculate To decide who pays for lunch, a...Ch. 4 - Predict/Calculate A cannon is placed at the bottom...Ch. 4 - A golfer hits a shot to an elevated green. The...Ch. 4 - Shot Put Record A mens world record for the shot...Ch. 4 - Referring to Conceptual Example 4-13, suppose the...Ch. 4 - A Lob Pass Versus a Bullet A quarterback can throw...Ch. 4 - For summertime fun, you decide to combine diving...Ch. 4 - Landing on Mars When the twin exploration rovers,...Ch. 4 - Collision Course A useful rule of thumb in...Ch. 4 - As discussed in Example 4-14, the archerfish hunts...Ch. 4 - Find the launch angle for which the range and...Ch. 4 - A mountain climber jumps a crevasse of width W by...Ch. 4 - Landing on a Different Level A projectile fired...Ch. 4 - A mountain climber jumps a crevasse by leaping...Ch. 4 - Projectiles: Coming or Going? Most projectiles...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Referring to Example 4-9 (a) At what launch angle...Ch. 4 - Referring to Example 4-9 Suppose that the golf...Ch. 4 - Referring to Example 4-11 Suppose the ball is...Ch. 4 - Predict/Calculate Referring to Example 4-11...
Additional Science Textbook Solutions
Find more solutions based on key concepts
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
16. Explain some of the reasons why the human species has been able to expand in number and distribution to a g...
Campbell Biology: Concepts & Connections (9th Edition)
The genes dumpy (dp), clot (cl), and apterous (ap) are linked on chromosome II of Drosophila. In a series of tw...
Concepts of Genetics (12th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Rocky the Flying Squirrel is carrying a nut of mass 0.5 kg while flying horizontally at a height of 15 m above the ground at a speed of 12 m/s. Bullwinkle is eagerly awaiting the delivery of the nut on the ground. Rocky releases the nut as he is directly above Bullwinkle. How far from Bullwinkle will the nut land if Bullwinkle does not move? O 8.49 m O 5.20 m O 4.24 m O 20.8 marrow_forwardQuestion 14 ✔ Saved Steven drops a piece of putty onto the ground where it sticks. Mark drops a rubber ball, which bounces back up to the same height. Which of the following statements is true. AP ball > AP putty OAP ballarrow_forward7. Louise spikes a volleyball. At the instant the ball leaves her hand, its height is 2.6m and its resultant velocity is 20m/s downward and forward at an angle of 70° below the horizontal. How long will it take for the ball to strike the floor if the opposing team does not block it? a. b. How far will the ball travel in the horizontal direction before it strikes the floor? 70° 20 m/s w 9'7arrow_forwardIf two projectiles have the same size and shape but one is heavier than the other, which will travel further horizontally if they are both launched at the same angle and speed? a.The light one b.They will both be the same c.Not enough information to tell d.The heavy onearrow_forwardA person holds a rifle parallel to the ground and fires the rifle at the same moment he drops a bullet from the same height. What happens? Select one: a.The rifle bullet hits the ground first. b.The dropped bullet hits c.Both bullets hit the ground at the same time.arrow_forwardAntlion larvae lie in wait for prey at the bottom of a conical pit about 5.0 cm deep and 3.8 cm in radius. When a small insect ventures into the pit, it slides to the bottom and is seized by the antlion. If the prey attempts to escape, the antlion rapidly launches grains of sand at the prey, either knocking it down or causing a small avalanche that returns the prey to the bottom of the pit. Suppose an antlion launches grains of sand at an angle of 72 above the horizon. Find the launch speed v0 required to hit a target at the top of the pit, 5.0 cm above and 3.8 cm to the right of the antlion.arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in Figure P3.50, but that the balls speed after the bounce is one-half of what it was before the bounce. (a) Assume the ball is always thrown with the same initial speed and ignore air resistance. At what angle should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 45.0 with no bounce (green path)? (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw.arrow_forwardConstruct Your Own Problem Consider a ball tossed over a fence. Construct a problem in which you calculate the ball's needed initial velocity to just clear the fence. Among the things to determine are; the height of the fence, the distance to the fence from the point of release of the ball, and the height at which the ball is released. You should also consider whether it is possible to choose the initial speed for the ball and just calculate the angle at which it is thrown. Also examine the possibility of multiple solutions given the distances and heights you have chosen.arrow_forwardA fireworks rocket explodes at height h, the peak of its vertical trajectory. It throws out burning fragments in all directions, but all at the same speed v. Pellets of solidified metal fall to the ground without air resistance. Find the smallest angle that the final velocity of an impacting fragment makes with the horizontal.arrow_forwardA student throws a heavy red ball horizontally from a balcony of a tall building with an initial speed i. At the same time, a second student drops a lighter blue ball from the balcony. Neglecting air resistance, which statement is true? (a) The blue ball reaches the ground first. (b) The balls reach the ground at the same instant. (c) The red ball reaches the ground first. (d) Both balls hit the ground with the same speed. (e) None of statements (a) through (d) is true.arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in Figure P4.46, but that the balls speed after the bounce is one-half of what it was before the bounce. (a) Assume the ball is always thrown with the same initial speed and ignore air resistance. At what angle should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 45.0 with no bounce (green path)? (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Figure P4.46arrow_forwardDraw each of the following vectors, then find its x- and y-components.a. d→ = (2.0 km, 30° left of +y-axis)b. ν→ = (5.0 cm/s, -x-direction)c. a→ = (10 m/s2, 40° left of -y-axis)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY