Concept explainers
You’re 6.0 m from one wall of the house seen in FIGURE P4.55. You want to toss a ball to your friend who is 6.0 m from the opposite wall. The throw and catch each occur 1.0 m above the ground.
a. What minimum speed will allow the ball to clear the roof?
b. At what angle should you toss the ball?
Learn your wayIncludes step-by-step video
Chapter 4 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Anatomy & Physiology (2nd Edition)
- A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi = 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P4.13. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land? Figure P4.13arrow_forwardA golfer hits his approach shot at an angle of 50.0, giving the ball an initial speed of 38.2 m/s (Fig. P4.60). The ball lands on the elevated green, 5.50 m above the initial position near the hole, and stops immediately. a. How much time passed while the ball was in the air? b. How far did the ball travel horizontally before landing? c. What was the peak height reached by the ball? FIGURE P4.60arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forward
- A softball is hit with an initial velocity of 29.0 m/s at an angle of 60.0 above the horizontal and impacts the top of the outfield fence 5.00 s later. Assuming the initial height of the softball was 0.500 m above (level) ground, what are the balls horizontal and vertical displacements?arrow_forwardA projectile is launched up and to the right over flat, level ground. If air resistance is ignored, its maximum range occurs when the angle between its initial velocity and the ground is 45. Which angles would result in the range being equal to half the maximum?arrow_forwardMIT’s robot cheetah can jump over obstacles 46 cm high and has speed of 12.0 km/h. (a) If the robot launches itself at an angle of 60 at this speed, what is its maximum height? (b) What would the launch angle have to be to reach a height of 46 cm?arrow_forward
- A circus performer stands on a platform and throws an apple from a height of 45 m above the ground with an initial velocity v0 as shown in Figure P4.20. A second, blindfolded performer must catch the apple. If v0=26m/s, how far from the end of the platform should the second performer stand?arrow_forwardAn arrow is fired with initial velocity v0 at an angle from the top of battlements, a height h above the ground. a. In terms of h, v0, , and g, what is the time at which the arrow reaches its maximum height? b. In terms of h, v0, , and g, what is the maximum height above the ground reached by the arrow?arrow_forwardA World War II bomber flies horizontally over level terrain with a speed of 275 m/s relative to the ground and at an altitude of 3.00 km. The bombardier releases one bomb. (a) How far does the bomb travel horizontally between its release and its impact on the ground? Ignore the effects of air resistance. (b) The pilot maintains the planes original course, altitude, and speed through a storm of flak. Where is the plane when the bomb hits the ground? (c) The bomb hits the target seen in the telescopic bombsight at the moment of the bombs release. At what angle from the vertical was the bombsight set?arrow_forward
- A person standing at the top of a hemispherical rock of radius R kicks a ball (initially at rest on the top of the rock) to give it horizontal velocity vi as shown in Figure P3.56. (a) What must be its minimum initial speed if the ball is never to hit the rock after it is kicked? (b) With this initial speed, how far from the base of the rock does the ball hit the ground?arrow_forward35.0° above the ground. a. How much time does it take for the ball to reach the goal posts? b. How high is the ball when it reaches the goal posts? Does it clear the horizontal bar, which is 3.44m high offarrow_forwardOn top of a 9.0m cliff, you throw a rock with a velocity of 13.0m/s at an angle 30° below the horizontal.a. How long will it take for the ball to hit the ground below? b. How far horizontally from the base of the cliff will the rock reach at when it impacts theground?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning