Concept explainers
(a)
The fraction of the alpha particles that is scattered between
(a)
Answer to Problem 51P
The fraction of the alpha particles that is scattered between
Explanation of Solution
Write the expression for number of alpha particles scattered.
Here,
Write the expression to find the frequency between
Conclusion:
Substitute
Substitute
Substitute
Thus, the fraction of the alpha particles that is scattered between
(b)
The ratio of alpha particles scattered through angles greater than
(b)
Answer to Problem 51P
The ratio of alpha particles scattered through angles greater than
Explanation of Solution
At two different angles, everything will remain same except the angle, so the ratio of the number of
Conclusion:
Substitute
Substitute
Thus, the ratio of alpha particles scattered through angles greater than
Want to see more full solutions like this?
Chapter 4 Solutions
Modern Physics for Scientists and Engineers
- Find the fraction of 7.7-MeV α particles that is deflected at an angle of 90° or more from a gold foil of 10 -6 m thickness.arrow_forwardIn a scattering experiment, you concentrate on Alpha particles with impact parameters b=0, 1×10^-3, and 1×10^0 mm. For which b will the behavior of the Alpha particle be very different in Thomson's and Rutherford's models and for which will it be nearly similar?arrow_forwardA. If the position of a chlorine ion in a membrane is measured to an accuracy of 1.50 µm, what is its minimum uncertainty in velocity (in m/s), given its mass is 5.86 10-26 kg? B. If the ion has this velocity, what is its kinetic energy in eV? (Compare this with typical molecular binding energies of about 5 eV.)arrow_forward
- The emergence of line spectra from a gas when a current passes through it was an observed phenomenon waiting for an explanation in the early 20th century. The atomic line spectra coming from elements such as hydrogen had been analyzed since the late 19th century. By studying the wavelength of the emerging radiation of hydrogen, experimenters found (often by trial and error) that the wavelengths in those spectra were described by the formula 1 = R ( 1/2 - 1/2 ) where R is known as the Rydberg constant. It has a value of R=1.097 × 107 m-¹. The variables n₁ and no are integer numbers (n₁ = 1, 2, 3, 4, ...). As experiments continued, scientists began to see more and more characteristic lines emerging from the hydrogen spectrum. Each of them corresponded to a wavelength predicted by this formula with some integer values for m₁ and ₂. In 1913, Niels Bohr provided an explanation for the observations made in experiments by proposing that each electron in an atom had only certain allowable…arrow_forwardA beam of α particles of kinetic energy E = 10 MeV and intensity I = 1 μ A hits a lead target [A = 207, Z = 82, ρ = 1.14 x 104 kg m-3] of thickness t = 0.2 mm. We locate a counter of area S = 1 cm2 at a distance of l = 0.5 m beyond the target at the angle θ = 40°. Neglecting, when necessary, the variation of the angle on the detector find: (a) the number of incident particles per second Ri, (b) the solid angle ΔΩ under which the target sees the detector, (c) the differential cross-section at the detector, and (d) how many hits the detector counts per second.arrow_forwardGeiger and Marsden (1909) observed backward-scattered (θ ≥90°) α particles when a beam of energetic α particles was directed at a piece of gold foil as thin as 6.0 x 10-7 m. Assuming an α particle scatters from an electron in the foil, what is the maximum scattering angle?arrow_forward
- A solid metal sphere emits 1.42 ✕ 1020 photons every second with a radiating power of 2.53 W. (a)Determine the energy associated with each photon. eV (b)Assuming the sphere's power output is associated with the peak wavelength, determine the temperature of the sphere at which this wavelength is emitted. Karrow_forwardIf the radius of a calcium ion is 0.22 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits.arrow_forwardThe average energy of a photon in a pulsed laser beam is 2.39 eV, with a minimum uncertainty of 0.0155 eV. Each pulse has an average of 5.00 x 1012 photons. Find (a) the time duration of each pulse, (b) the wavelength of the light, and (c) the energy per pulse in J.arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardAn HCl molecule vibrates with a natural frequency of 8.1 x1013 Hz What is the difference in energy (in joules and electron volts) between successive values of the oscillation energy?arrow_forwardWhat is the kinetic energy of each electron in a beam of electrons if the beam produces a diffraction pattern of a crystal which is similar to that of a beam of 1.00 eV neutrons? (knowing that electron mass is 9.11*10^-31 kg and neutron mass is 1.67*10^-26 kg). What are the specific equations that are being used in this problem?arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning